987 research outputs found

    The Orbital Period of the Be/Neutron Star Binary RX J0812.4-3114

    Full text link
    We present the results of Rossi X-ray Timing Explorer observations of the Be star X-ray binary system RX J0812.4-3114. A light curve obtained with the RXTE All-Sky Monitor shows that the source is currently in an active state with outbursts occurring at approximately 80 day intervals. The source underwent a transition from an inactive state to this regular outburst state early in 1998. An observation of RX J0812.4-3114 was obtained with the RXTE Proportional Counter Array close to the time of a predicted maximum in March 1999 and strong pulsations were detected at a period of 31.88 seconds. This confirms the result of an earlier PCA observation by Reig & Roche which was serendipitously also obtained near the predicted maximum flux of the 80 day period and also near the start of the current active state. We interpret the periodicity in the ASM light curve as indicating the orbital period of RX J0812.4-3114 with outbursts occurring around periastron passage

    The Orbit and Position of the X-ray Pulsar XTE J1855-026 - an Eclipsing Supergiant System

    Get PDF
    A pulse timing orbit has been obtained for the X-ray binary XTE J1855-026 using observations made with the Proportional Counter Array on board the Rossi X-ray Timing Explorer. The mass function obtained of ~16Mo together with the detection of an extended near-total eclipse confirm that the primary star is a supergiant as predicted. The orbital eccentricity is found to be very low with a best fit value of 0.04 +/- 0.02. The orbital period is also refined to be 6.0724 +/- 0.0009 days using an improved and extended light curve obtained with RXTE's All Sky Monitor. Observations with the ASCA satellite provide an improved source location of R.A. = 18h 55m 31.3s}, decl. = -02o 36' 24.0" (2000) with an estimated systematic uncertainty of less than 12". A serendipitous new source, AX J1855.4-0232, was also discovered during the ASCA observations.Comment: Accepted for publication in the Astrophysical Journa

    Rossi X-ray Timing Explorer Observations of the X-ray Pulsar EXO 1722-363 - a Candidate Eclipsing Supergiant System

    Full text link
    Observations made of the X-ray pulsar EXO 1722-363 using the Proportional Counter Array and All Sky Monitor on board the Rossi X-ray Timing Explorer reveal the orbital period of this system to be 9.741 +/- 0.004 d from periodic changes in the source flux. The detection of eclipses, together with the values of the pulse and orbital periods, suggest that this source consists of a neutron star accreting from the stellar wind of an early spectral type supergiant companion. Pulse timing measurements were also obtained but do not strongly constrain the system parameters. The X-ray spectra can be well fitted with a model consisting of a power law with a high energy cutoff and, for some spectra, a blackbody component with a temperature of approximately 0.85 keV.Comment: Accepted for publication in The Astrophysical Journal. 27 pages including 10 figure

    Swift/BAT and RXTE Observations of the Peculiar X-ray Binary 4U 2206+54 - Disappearance of the 9.6 Day Modulation

    Get PDF
    Observations of the high-mass X-ray binary 4U 2206+54 with the Swift Burst Alert Telescope (BAT) do not show modulation at the previously reported period of 9.6 days found from observations made with the Rossi X-ray Timing Explorer (RXTE) All-Sky Monitor (ASM). Instead, the strongest peak in the power spectrum of the BAT light curve occurs at a period of 19.25 +/- 0.08 days, twice the period found with the RXTE ASM. The maximum of the folded BAT light curve is also delayed compared to the maximum of the folded ASM light curve. The most recent ASM data folded on twice the 9.6 day period show similar morphology to the folded BAT light curve. This suggests that the apparent period doubling is a recent secular change rather than an energy-dependent effect. The 9.6 day period is thus not a permanent strong feature of the light curve. We suggest that the orbital period of 4U 2206+54 may be twice the previously proposed value.Comment: Accepted for publication in The Astrophysical Journa

    The X-ray Properties of M101 ULX-1 = CXOKM101 J140332.74+542102

    Full text link
    We report our analysis of X-ray data on M101 ULX-1, concentrating on high state Chandra and XMM-Newton observations. We find that the high state of M101 ULX-1 may have a preferred recurrence timescale. If so, the underlying clock may have periods around 160 or 190 days, or possibly around 45 days. Its short-term variations resemble those of X-ray binaries at high accretion rate. If this analogy is correct, we infer that the accretor is a 20-40 Msun object. This is consistent with our spectral analysis of the high state spectra of M101 ULX-1, from which we find no evidence for an extreme (> 10^40 ergs/s) luminosity. We present our interpretation in the framework of a high mass X-ray binary system consisting of a B supergiant mass donor and a large stellar-mass black hole.Comment: 23 pages, 7 figures, accepted for publication in the Astrophysical Journa

    RXTE Observations of the Be star X-ray Transient X0726-260 (4U0728-25) - Orbital and Pulse Periods

    Get PDF
    Rossi X-ray Timing Explorer (RXTE) All Sky Monitor observations of the transient Be star X-ray source X0726-260 suggest a 34.5 day period. This is apparently confirmed by a serendipitous RXTE Proportional Counter Array (PCA) slew detection of the source on 1997 May 5, near the time of a predicted flux maximum. A subsequent 5000 second pointed observation of X0726-260 with the RXTE PCA detector was carried out on 1997 June 7, when X0726-260 was predicted to be bright again, and this revealed pulsations at a period of 103.2 seconds. If the 34.5 day period is orbital, then the pulse period is surprisingly long compared to that predicted by the correlation between orbital period and spin period observed for other Be/neutron star systems. A possible similarity with GROJ2058+42 is briefly discussed.Comment: 7 pages LateX, 7 figures. To be published in Astrophysical Journal Letter

    4U2206+54 - an Unusual High Mass X-ray Binary with a 9.6 Day Orbital Period but No Strong Pulsations

    Get PDF
    Rossi X-ray Timing Explorer All-Sky Monitor observations of the X-ray source 4U2206+54, previously proposed to be a Be star system, show the X-ray flux to be modulated with a period of approximately 9.6 days. If the modulation is due to orbital variability then this would be one of the shortest orbital periods known for a Be star X-ray source. However, the X-ray luminosity is relatively modest whereas a high luminosity would be predicted if the system contains a neutron star accreting from the denser inner regions of a Be star envelope. Although a 392s pulse period was previously reported from EXOSAT observations, a reexamination of the EXOSAT light curves does not show this or any other periodicity. An analysis of archival RXTE Proportional Counter Array observations also fails to show any X-ray pulsations. We consider possible models that may explain the properties of this source including a neutron star with accretion halted at the magnetosphere and an accreting white dwarf.Comment: Accepted for publication in the Astrophysical Journa

    Discovery of the Orbit of the Transient X ray Pulsar SAX J2103.5+4545

    Full text link
    Using X-ray data from the Rossi X-Ray Timing Explorer (RXTE), we carried out pulse timing analysis of the transient X-ray pulsar SAX J2103.5+4545. An outburst was detected by All Sky Monitor (ASM) October 25 1999 and reached a peak X-ray brightness of 27 mCrab October 28. Between November 19 and December 27, the RXTE/PCA carried out pointed observations which provided us with pulse arrival times. These yield an eccentric orbit (e= 0.4 \pm 0.2) with an orbital period of 12.68 \pm 0.25 days and light travel time across the projected semimajor axis of 72 \pm 6 sec. The pulse period was measured to be 358.62171 \pm 0.00088 s and the spin-up rate (2.50 \pm 0.15) \times 10^{-13} Hz s^{-1}. The ASM data for the February to September 1997 outburst in which BeppoSAX discovered SAX J2103.5+4545 (Hulleman, in't Zand and Heise 1998) are modulated at time scales close to the orbital period. Folded light curves of the 1997 ASM data and the 1999 PCA data are similar and show that the intensity increases at periastron passages.Comment: To appear in The Astrophysical Journal (Letters

    Discovery of a 75 day orbit in XTE J1543-568

    Get PDF
    Dedicated monitoring of the transient X-ray pulsar XTE J1543-568 during the first year after its discovery has revealed the unambiguous detection of a binary orbit. The orbital period is 75.56+/-0.25 d, and the projected semi-major axis 353+/-8 lt-sec. The mass function and position in the pulse period versus orbital period diagram are consistent with XTE J1543-568 being a Be X-ray binary. The eccentricity of less than 0.03 (2 sigma) is among the lowest for the 12 Be X-ray binaries whose orbits have now been measured. This confirms the suspicion that small kick velocities of neutron stars during supernovae are more common than expected. The distance is estimated to be larger than 10 kpc, and the luminosity at least 1E37 erg/s.Comment: Accepted for publication in ApJ Letter

    Discovery of a new Transient X-ray Pulsar in the Small Magellanic Cloud

    Get PDF
    Rossi X-Ray Timing Explorer observations of the Small Magellanic Cloud have revealed a previously unknown transient X-ray pulsar with a pulse period of 95s. Provisionally designated XTE SMC95, the pulsar was detected in three Proportional Counter Array observations during an outburst spanning 4 weeks in March/April 1999. The pulse profile is double peaked reaching a pulse fraction \~0.8. The source is proposed as a Be/neutron star system on the basis of its pulsations, transient nature and characteristically hard X-ray spectrum. The 2-10 keV X-ray luminosity implied by our observations is > 2x10^37 erg/s which is consistent with that of normal outbursts seen in Galactic systems. This discovery adds to the emerging picture of the SMC as containing an extremely dense population of transient high mass X-ray binaries.Comment: Accepted by A&A. 7 pages, 6 figure
    • …
    corecore