213 research outputs found

    La llum, vista a través de l'electrodinàmica quàntica

    Get PDF
    El premi Nobel de física del 2005 es va concedir a tres investigadors en el camp de l'òptica quàntica. És sorprenent el que actualment s'arriba a fer amb la llum, treballant en l'àmbit de l'electrodinàmica quàntica

    Adiabatic Splitting, Transport, and Self-Trapping of a Bose-Einstein Condensate in a Double-Well Potential

    Get PDF
    We show that the adiabatic dynamics of a Bose-Einstein condensate (BEC) in a double well potential can be described in terms of a dark variable resulting from the combination of the population imbalance and the spatial atomic coherence between the two wells. By means of this dark variable, we extend, to the non-linear matter wave case, the recent proposal by Vitanov and Shore [Phys. Rev. A 73, 053402 (2006)] on adiabatic passage techniques to coherently control the population of two internal levels of an atom/molecule. We investigate the conditions to adiabatically split or transport a BEC as well as to prepare an adiabatic self trapping state by the optimal delayed temporal variation of the tunneling rate via either the energy bias between the two wells or the BEC non-linearity. The emergence of non-linear eigenstates and unstable stationary solutions of the system as well as their role in the breaking down of the adiabatic dynamics is investigated in detail.Comment: 8 pages, 7 figure

    Double barrier potentials for matter-wave gap solitons

    Full text link
    We investigate collisions of solitons of the gap type, supported by a lattice potential in repulsive Bose-Einstein condensates, with an effective double-barrier potential that resembles a Fabry-Perot cavity. We identify conditions under which the trapping of the entire incident soliton in the cavity is possible. Collisions of the incident soliton with an earlier trapped one are considered too. In the latter case, many outcomes of the collisions are identified, including merging, release of the trapped soliton with or without being replaced by the incoming one, and trapping of both solitons.Comment: 5 pages, 4 figure

    Full polarization chaos in a pump-polarization modulated isotropic cavity laser

    Get PDF
    We study the dynamic behavior of an optically pumped J = 0 → J = 1 → J = 0 laser operating with an isotropic ring cavity and a linearly polarized pump field whose direction of polarization is modulated by the sinusoidal law θ(t) = m sin Ωt. Modulation frequencies Ω of the same order of magnitude as the transverse relaxation rate of the laser transition are considered here. At large enough modulation amplitudes, and for a detuned cavity, we obtain fully developed polarization chaos, which affects both the ellipticity and the orientation of the polarization ellipse as well as the laser intensity

    A deterministic cavity-QED source of polarization entangled photon pairs

    Get PDF
    We present two cavity quantum electrodynamics proposals that, sharing the same basic elements, allow for the deterministic generation of entangled photons pairs by means of a three-level atom successively coupled to two single longitudinal mode high-Q optical resonators presenting polarization degeneracy. In the faster proposal, the three-level atom yields a polarization entangled photon pair via two truncated Rabi oscillations, whereas in the adiabatic proposal a counterintuitive Stimulated Raman Adiabatic Passage process is considered. Although slower than the former process, this second method is very efficient and robust under fluctuations of the experimental parameters and, particularly interesting, almost completely insensitive to atomic decay.Comment: 5 pages, 5 figure

    Filtering of matter wave vibrational states via spatial adiabatic passage

    Get PDF
    We discuss the filtering of the vibrational states of a cold atom in an optical trap, by chaining this trap with two empty ones and controlling adiabatically the tunneling. Matter wave filtering is performed by selectively transferring the population of the highest populated vibrational state to the most distant trap while the population of the rest of the states remains in the initial trap. Analytical conditions for two-state filtering are derived and then applied to an arbitrary number of populated bound states. Realistic numerical simulations close to state-of-the-art experimental arrangements are performed by modeling the triple well with time dependent P\"oschl-Teller potentials. In addition to filtering of vibrational states, we discuss applications for quantum tomography of the initial population distribution and engineering of atomic Fock states that, eventually, could be used for tunneling assisted evaporative cooling.Comment: 7 pages, 6 figure

    Experimental observation of parametric effects near period doubling in a loss-modulated CO2 laser

    Get PDF
    A number of parametric effects, such as suppression of period doubling, shift of the bifurcation point, scaling law relating the shift and the perturbation amplitude, influence of the detuning on the suppression, reaching of the maximum gain between the original and shifted bifurcation points, and scaling law for idler power are experimentally observed near period doubling bifurcation in a loss-driven CO2 laser that is subjected to periodic loss perturbations at a frequency that is close to a parametric resonance of the unperturbed system

    Generation of entangled photon pairs in optical cavity-QED: Operating in the bad cavity limit

    Full text link
    We propose an optical cavity-QED scheme for the deterministic generation of polarization entangled photon pairs that operates with high fidelity even in the bad cavity limit. The scheme is based on the interaction of an excited four-level atom with two empty optical cavity modes via an adiabatic passage process. Monte-Carlo wave function simulations are used to evaluate the fidelity of the cavity-QED source and its entanglement capability in the presence of decoherence. In the bad cavity limit, fidelities close to one are predicted for state-of-the-art experimental parameter values.Comment: 9 pages and 5 figure

    Saturation spectroscopy in optically thick three-level gas media

    Get PDF
    High-contrast transmission spectra arising from saturated absorption in optically thick Doppler-broadened three-level media are analyzed within the formalism of Maxwell-Bloch-type equations. It is found that although in the strong pumping engine propagation-induced line narrowing and light-shift elimination occur, spectral features lying within the natural linewidth cannot be resolved

    Generalized Einstein B coefficients for coherently driven three-level systems

    Get PDF
    Generalized Einstein B coefficients for coherently driven closed three-level systems are introduced by means of the quantum-jump technique. The nonreciprocity between stimulated emission and absorption for both one-photon and two-photon gain and loss processes has been studied and quantified in terms of the rates of the particular incoherent processes present in each three-level system. Some general properties of these generalized Einstein B coefficients have been found. In particular, whenever the generalized Einstein B coefficient for one-photon gain overcomes that for one-photon loss then the generalized Einstein B coefficient for two-photon loss overcomes that for two-photon gain, and vice versa. Finally, we have obtained simple analytical expressions indicating the way to maximize the asymmetry between stimulated emission and absorption coefficients either for one-photon or for two-photon processes
    • …
    corecore