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Generalized EinsteinB coefficients for coherently driven three-level systems
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Generalized EinsteiB coefficients for coherently driven closed three-level systems are introduced by means
of the quantum-jump technique. The nonreciprocity between stimulated emission and absorption for both
one-photon and two-photon gain and loss processes has been studied and quantified in terms of the rates of the
particular incoherent processes present in each three-level system. Some general properties of these generalized
Einstein B coefficients have been found. In particular, whenever the generalized Eistefficient for
one-photon gain overcomes that for one-photon loss then the generalized Bihestefiicient for two-photon
loss overcomes that for two-photon gain, and vice versa. Finally, we have obtained simple analytical expres-
sions indicating the way to maximize the asymmetry between stimulated emission and absorption coefficients
either for one-photon or for two-photon processes.
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[. INTRODUCTION the presence of intense laser fields, the density-matrix for-
malism suggests, for instance, that light amplification or at-
The combination of Bohr’s atomic model with a stochas-tenuation by the medium is no longer determined by the
tic conception of the light-matter interaction allowed Ein- population differences alone, which, in turn, suggests a non-
stein(1916-1917 to determine, in the context of his study of equality between the probabilities of the reverse processes of
blackbody radiation, the relationship between the rates o$timulated emission and absorption.
absorption and stimulated emission of light by a gas atom For many years, different efforts have been made to de-
possessing discrete energy levels, in terms of the so-calletbmpose the reduced density-matrix evolution into pure state
EinsteinB coefficients[1]. In the framework of perturbation evolution. In the last decade, different stochastic decomposi-
theory, equalB coefficients for absorption and stimulated tions of the density-matrix were proposed based on the inter-
emission between two nondegenerate levels were obtaineglay of a Schrdinger evolution accounting for the continu-
These coefficients together with the Einstéincoefficient ous evolution associated with the coherent interaction, and
accounting for spontaneous emission allowed Einstein to eswave-function collapses or quantum jumps associated with
tablish rate equations governing the atomic populations andissipation[2—-5]. Recalling Einstein theory, all these ap-
light propagation through an atomic medium. Thus, accordproaches were based on a stochastic conception of the light-
ing to Einstein theory, the atomic population differences desmatter interaction to describe dissipation. Thus, the time evo-
termine the light attenuation or amplification by the atomiclution of the wave function of a single atom, a so-called
medium. In particular, as is shown in any standard laser textquantum trajectory, consists of a series of continuous coher-
book, the equality between stimulated emission and absorgent evolution periods separated by quantum jumps or wave-
tion B coefficients implies the well known population inver- function collapses occurring at random times. The continu-
sion condition for light amplification. ous evolution is calculated by intregrating the Sclinger
Nevertheless, this preliminary picture of the light-matterequation using an effective non-Hermitian Hamiltonian
interaction in terms of the Einstein coefficients no longerwhile quantum jumps occurring at random times account for
holds in the presence of a nonperturbative interaction such dbe irreversibility associated with dissipation. This quantum-
that produced by a laser field. In this case, the Sdinger  trajectory formalism, which is indeed equivalent to the usual
equation must be solved nonperturbatively for a suitable dedescription in terms of optical Bloch equations when aver-
scription of the interaction with the laser field. Unfortu- aged over many realizations of the trajectories, is interesting
nately, a pure Schoinger evolution does not succeed in for at least two different reasoné) in the wave-function
describing the irreversibility associated with dissipation, e.g.freatment of a system belonging to Blrdimensional Hilbert
in the presence of spontaneous emission. The Safger  space the number of variablesNswhile in the density ma-
equation can no longer describe, in general, the dynamics dfix it is N2, and(ii) it provides new insights into the under-
a system consisting of an atom in interaction with a coherenlying physical mechanisms involved in the light-matter inter-
field and subjected to dissipative processes. action. In fact, the quantum-trajectory approach has been
In the presence of both coherent and incoherent processeapplied with success to a large number of problems in quan-
the standard procedure is the application of Langevin theoryum optics[6,7].
to the quantum mechanical system, resulting in a theory that Based on the quantum-trajectory formalism and using the
generalizes the Einstein and Sotirger approaches. This method of delay functionf8] previously introduced to study
results in a reduced density matrix that gives a quantitativéhe fluorescence of single atomic systems, Cohen-Tannoudji
description of the behavior of the system but does not proet al. [7] derived general statistical properties of the coherent
vide, in general, a clear physical interpretation of the particuevolution periods occurring between two successive quan-
lar mechanisms involved in the light-matter interaction. Intum jumps. These statistical tools provide, without the neces-
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FIG. 1. Closed three-level sys-
tems under investigatioria) h, (b)
V, (c) p, and (d) A schemes.«
andA, (8 andAp) are the Rabi
frequency and detuning of the

(€)  peoe probe (driving) TW laser field.
AA W
> . 4 . e, Rec The ratesR;; with i,j=a,b,c ac-
B ‘R AR Y count for the incoherent processes
FA, ety present in each particular scheme.
: i
o> = Roi — 78 i
a ,-':Rbc
RabiiRoa | >

|b> —

sity of explicitly performing a quantum-trajectory or Monte  Section Il introduces the coherently driven closed three-
Carlo simulation(semjanalytical expressions for the contri- level systems under investigation and reviews the quantum-
bution of the different physical processes responsible for thgump technique used to describe the interaction of these
attenuation or amplification of a laser field in interaction with three-level systems with laser fields in the presence of dissi-
an atomic medium. For these techniques to be applicablgyation. Thus, by using the quantum-jump formalism, gener-
two conditions are required(i) the number of relevant alized EinsteinB coefficients for one- and two-photon gain
atomic states involved in dissipative processes has to be fand loss processes are defined in Sec. Ill. Section IV dis-
nite, and(ii) the Hamiltonian has to be time independent.cusses some general properties of these generalized Einstein
Using these statistical tools, Arimond®] and Cohen- B coefficients. Finally, the main results of this paper are
Tannoudjiet al. [7] revealed that inversionless amplification summarized in the Conclusions.
in the so-called V- and\-type three-level systems results
from the fact that, for appropriate parameter values, two- |. MODEL AND REVIEW OF THE QUANTUM-JUMP
photon gain processes overcome one- and two-photon loss FORMALISM
processes even with population inversion at neither the one- )
photon transition nor the two-photon transition. On the con- Let us consider the four closed three-level schemes shown
trary, one-photon gain is the physical process responsible fdP Fig. 1 which, in the following, we will call as [Fig. 1(a)],
inversionless amplification in cascade three-level system¥ [Fig. Xb)], p [Fig. 1(c)], and A [Fig. 1(d)]. In each of
[10,11], also with neither one- nor two-photon population these schemes a weak traveling waVeV) probe laser with
inversion[12]. In addition, Carmichadll3] has recently pre- Rabi frequencye and detuningA ,= w,— w,p couples to
sented an extensive analysis of the origin of inversionles§yansition|a)-|b) while an intense TW laser field with Rabi
gain in the V scheme where lasing without inversion wasfrequencyg and detuningd ; drives the adjacent transition.
observed for the first tim¢14]. Finally, these techniques Dissipative processes are described by means of the popula-
have also allowed an explanation of inversionless amplification transfer rates;; with i,j=a,b,c. Thus,R;; with i#
tion in terms of the quantum Zeno effdd5]. accounts for, e.g., spontaneous emission, incoherent pump-
In this paper, we will use the statistical tools developed bying, or inelastic collisions transferring atoms from leiglto
Cohen-Tannoudji and co-workefg] to introduce general- level |j), while R; describes dipole dephasing due to, e.g.,
ized EinsteirB coefficients for one- and two-photon gain and elastic collisions or finite laser linewidfli6]. Although ini-
loss processes in coherently driven three-level systeméially R;; with i#j can account only for one-way incoherent
These coefficients will allow us to quantify in simple ana- pumping processes, it is straightforward to describe bidirec-
lytical expressions the nonreciprocity between stimulatedional pumping in these schemes. For instance, let us denote
emission and absorption for one- and two-photon processeby A the rate of a bidirectional pumping process coupled to
Some general properties of the asymmetry between the gefransition [a)-|b) for the h scheme of Fig. (); then R,y
eralized EinsteinB coefficients for both one-photon pro- =A+ vy, andRy,=A with y,, the spontaneous emission
cesses and two-photon processes will be obtained. Finallyate from|a) to |b).
some indications to maximize these asymmetries in terms of In what follows, let us consider a quantum description of
the rates of the incoherent processes present in each schebmth laser fields, wherbl, andN; are the photon numbers
will be given. of probe and drive laser modes, respectively. In the quantum-
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$ yield a new coherent evolution period in the same manifold
as the previous ond 6]. After the quantum jump occurs, the
continuous evolution resumes again. An illustrative example
of a quantum trajectory could be, for instance,

Energy

................. E(N; +1,Ny +1)
" laNg 1 ,an1>‘.“'
.. ——

E(N; +1,Ny) E(Ng ,Ny+1

)

Rpe Reca
o _)g(Nﬁ_ 11Na_ 1)_)§(NB 1Na)

Rob Rpe Rab
—&(Ng,Ny) = &E(Ng—=1IN,)— - .

Let us now label the continuous coherent evolution periods
between two successive quantum jumps, which will be called
period (,j), by the atomic statéi) in which the system
starts the coherent evolution and the atomic stptefrom
which the quantum jump takes place at the end of this pe-
riod. Then, a stochastic quantum trajectory has the general
form

--Rjjperiod j, k)R periodl,m)Ry,- - -,
FIG. 2. Different manifoldsé(Ng+=m,N,*n) of the three

(quas)degenerate states of the total syst@iom plus laser fields ~ with i,j,k,I,m,n=a,b,c. In all closed three-level systems
for theh scheme of Fig. (). N, andN are the photon numbers in  under investigation, there are up to nine possible coherent
the probe and driving modes, respectively. The solid horizontal arevolution periods. These periods are characterized by well-
rows represent the continuous evolution given by the laser interacdefined changes in the laser field photon number although
tion, while the dashed oblique and circular arrows represent thenly in four of them does the probe photon number change.
quantum jumps produced by the dissipative processes. In particular, for theh and V schemes of Figs(d) and 1b)

these four coherent evolution periods involving a change
jump formalism, the time evolution of the total systéatom  AN_==+1 in the number of probe photons are
plus laser fields a so-called quantum trajectory, is calcu-
lated by integrating the time-dependent Saiinger equation ~ period(a,b)—AN,=+1, ANgz=0—o0ne-photon gain,
using an effective non-Hermitian Hamiltonian. Incoherent
processes produce random quantum jumps that collapse thePeriodb,a)—AN,=—1, ANgz=0—o0ne-photon loss,
wave function to a single state. Thus a quantum trajectory

consists of a series of coherent evolution periods separated perioda,c)—AN,=+1,
by quantum jumps occurring at random times. )
To be specific, Fig. 2 shows, for tihescheme of Fig. (), ANg= +1—two-photon gain,

the states of the total systei@@atom plus laser photons )
grouped into different manifolds, the elliptical regions de- Periodc,a)—AN,=—1, ANgz=—1—two-photon loss.

noted by, of three(quasjdegenerate states: Two different probe gairllosy processes are therefore iden-

tified in the quantum-jump formalism. A coherent evolution

{laNg+mN,+n) starting in|a)(|b)) and ending in|b)(|a)) represents a

E(Ng+m,N,+n)= |b,N,gJr m,N,+1+n) 1) stimulated one-photon emissigabsorption process. If the
¢, Ng+1+m,N,+1+n)}, coherent evolution starts i)(|c)) and ends ifc)(|a)) it
represents a two-photon emissi@bsorption process.
with m,n=0,+1,+2, ... . Inthis figure, the different mani- ~ Therefore, for theh and V schemes, the mean change of

folds are displayed from bottom to top according to the in-the probe photon number per period is given by
crease in the total energy of the system with the assumption hv_ _ _
|w,— wg|<w,,wg. The horizontal solid arrows represent (ANg)™"=P(a,b)+P(a,c)-P(b.a)-P(c.a), ()

the laser interaction while the oblique and circular dashequth P(i,j) the probability that a random choice among all
arrows account for dissipative Processes. After a quantusperent evolution periods of the stochastic quantum trajec-
jump has just occurred, the system starts its evolution in ontgOry gives the periodi(j). For thep and A schemes, the

state qf some manifold a_md, due to the interaction with th ean change of the probe photon number per coherent evo-
laser fields, evolves continuously between the three states tion period reads

the given manifold in a Rabi oscillatory fashion. This coher-
ent evolution lasts until a quantum jump associated with (AN )P =P(a,b)+P(c,b)—P(b,a)—P(b,c). (3
some kind of dissipation interrupts the continuous evolution.

As a general feature, dissipative processes associated willhe physical processes responsible for probe field amplifica-
Rjj with i#]j correspond to quantum jumps connecting dif-tion (absorption are now one-photon stimulated emission
ferent manifolds while those associated WRl) with i=]j (absorption and two-photon processes with emissi@b-
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sorption of a probe photon and emissigabsorption for the  therefore, the probabilitieB(i) given in Egs(5) and(6) still

p scheme and absorptidemission for the A scheme of a remain valid even for a weak driving field provided that

drive photon. Ryp; for all j or, alternatively,R.;=0 for all j (for h and V
Note that the mean change in the probe photon numbeschemek or (i) R,; for all j, or, alternativelyR.;=0 for all

per unit time relates to the mean change per period as(for p and A schemes

(dN,/dt)=(AN,)/T whereT is the average time between  On the other hand, the conditional probabilitie$;/i)

two consecutive quantum jumpsee Egs(4.11) and(4.16  can be written a§7]

in Ref. [7]]. In order to evaluate the probability of each one

of these coherent evolution periods it is convenient to split - *

the probability P(i,j) into the probability that a coherent P(J/'):Glfo |cij()[*d7, @)

evolution period starts in stafg), denoted byP(i), times the

conditional probability that a period starting in stéteends  whereG; is the departure rate from stdié of any manifold

its coherent evolution in staig), denoted byP(j/i): due to all possible sources of dissipation:

P@.j)=P()P(j/i). (4)

The probabilitiesP(i) satisfy the normalization condition
3;P(i)=1. To evaluate these probabilities one needs to
make use of the recursive relationsiftpi) = =, P(j)Q(i/j),  andci(n)=(] |exp(=iHesrh)]i) is the probability amplitude
whereQ(i/j) is the conditional probability of starting a pe- 10 find the system in stafg¢) at timet+ 7 once the coherent
riod in state|i) once the previous one started in stéjte evoIL_Jtlon period starrted at tlmterr_1_state||>_ of rhe same
These conditional probabilities fulfil the condition Manifold. The effective non-Hermitian Hamiltoniady. for
3,Q(i/j)=1 for all j. The explicit values of these condi- the four three- IeveI schemes of Fig. 1 can be found in Ap-

Gi=2 Ry, 8)

tional probabilities for the four schemes under investigatiorPendix B. SinceHl = H3 for all four schemes, the prob-
can be found in Appendix A. ability amplitudes satisfy the symmetry property

For simplicity, we will restrict ourselves to the case in
which there are no dipole dephasing processes, i.e., the so- Cij = Cji» ©)

called radiative limit. In this casB;; =0 for all i and atomic
dipoles dephase only through the terRys (see[16]). Note,
however, that the inclusion d®;; in the subsequent results
would be straightforward. For thie and V schemes, in the !ll. FUNCTIONAL DEFINITION OF THE GENERALIZED
limit 8>ZX(Ryi+R.i),As anda<XiRy,;, 8, using Eq.(A1) EINSTEIN B COEFFICIENTS

with R;;=0 (i=a,b,c), and the former recursive relation-
ship for the probabilitie$(i), one obtains

as shown in Ref(7].

Once the physical processes responsible for probe ampli-
fication or attenuation have been identified and the respective
R..+R.)(Rw.+R con_tribrrtions hfave peen_galculate_d, it is straightforward to
P(a)h'V=( abt Rac)(Roa Ca), (58  define in the Einstein spirit four differel coefficients for
D one- and two-photon gain and loss processes. Thus, fdr the
and V schemes, a functional definition of these generalized

RacRcb+ Rab( Rba+ Rca+ Rcb)

P(b)MV= 5 , (sb)  EinsteinB coefficients is
d hv
hv_ RabRoct Rac(Rpat Reat Roc) (&na) =1 o,No(paaBabt PaaBac— PouBba= PccBea)s
P(c)™"= D . (50 10

whereD = (Rap+ Rac)[2(Roat Rea) ¥ Roct Rep]. For thep  wheren,, is the number of photons per unit volume in the
and A schemes, in the limi3>2(Ryi+Rci),Ag and @ probe moden, p,,Bap andn,pppBya account for the rates of
<ZiRy;, B, and using Eq(A2) with R;;=0, one has one-photon gain and loss processes, ang..B.. and
n,pccBca fOr two-photon gain and loss processes, respec-
Rea( Roa*+ Roo) + Roa( Rap+ Rep) octca P ot g g

P(a)PA= . (ea tively. For thep and A schemes, this functional definition
E reads
(Rba+ Rbc)(Rab+ Rcb) d p.A
A
P(b)P "= E ! (6b) (ana) =1 woNa(PaaBabt PecBeb— PbbBba™ PobBoe),
1D
P(C)p’A= Rac(Rba+ Rbc)+ Rbc( Rapt Rcb) (60)

with n,p..Bap and n,pppBpa accounting for the rates of
one-photon gain and loss processes, ang..B., and
where E=(Rya+ Rpe)[2(Rapt+ Rep) + Ract Real. As stated  n,pppBpe for the rates of two-photon gain and loss pro-
in Appendix A, the conditional probabilitieQ(i/j) and, cesses, respectively.

E )
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In the second case, only two-photon processes take place
in the A scheme. The equation that governs probe attenua-
tion or amplification now becomes:

(a}

A
= ﬁwana(pccBCb_ pbbBbC)

——n
®) (dt “
=h N Bep(pec Pob)s (13
11« NgPagBac
+ ' with B.,=By. in this case due to the equality between the
probabilities for two-photon stimulated emission and absorp-
tion. Now, the sign of the two-photon population difference
FIG. 3. Schematic respresentation (@f one-photon gain pro- determines the behavior of the medium. Fgg— ppp>0
cesses an¢h) two-photon gain processes for thescheme of Fig.  (<0) there is net probe amplificatiofabsorption while
1(&) The thin(thick) line represents the interaction with the probe probe transparency occurs fpgcz Pbb - In fac'l:7 theA Sys-
(driving) field. In all three processes shown (i@ the atom under- tem can operate as a Stokés anti-Stokes Raman laser
goes a transition from state) to stateb) with an energy exchange \yhen a large enough two-photon population inversion oc-
between the atom and the fieldN,=+1 andAN,=0. Rzisa s,
quantum jump that brings the atom to st@ andR;; a quantum In these two cases probe amplification or absorption oc-
jump that takes the atom out of stdte). (b) The same for two- .\ ¢ jenanding on whether there is population inversion or
photon gain processes wilky; a quantum jump that takes the atom not. Nevertheless, it is well known that three-level systems
out of state{c). NupaaBap ANdNapaqBa; are the rates of one- and driv.en close to re’sonance i.e., fBeA;, present unusual
two-photon gain processes, wik, and B, the generalized Ein- features that cannot be ex,pléir.;ed in tégr’ms of population dif-
stein B coefficients for one- and two-photon gain, respectively. ferences alonl7], e.g., coherent population trappifige]
. . . . - electromagnetically induced transpareft|, amplification
The meaning of these g(_anerallzed Ems;Bmoefﬁments . or lasing v%ithout gopulation inverrs)ioﬁﬂo],gand Sopulation
can be easily understood with the help of Fig. 3. As shown MNnversion without amplification or lasin®21]. We are inter-
ested here in this laser-matter interaction regime for which
®oth one- and two-photon processes are present at similar
) . Py rates and where the occurrence of a process or its reverse
incoherent procesR;, (i=a,b,c), and ending in stateh)  oes not depend only on the population differences between
through a quantum jump given bigy,; (j=a,b,c). In all 5 evels connected. By using the generalized Einskein

these one-photon gain processes the energy exchange Reyefficients defined in Eq$10) and (11), we will explicitly
tween the atom and the two coherent fields satisfibls,= demonstrate and quantify a symmetry breakifig., B;

+1 with ANg=0 irrespective of the explicit number of driv- #B;;) between, on the one hand, one-photon gain and loss
ing photons involved in the interaction. Figurébg illus-

h ically th . fth lved Ei processes, and, on the other hand, two-photon gain and loss
trates schematically the meaning of the generalize E'”Ste'Brocesses. Simple quantitative expressions for this asymme-
B, coefficient for two-photon gain processes.

. X _ _ _ _try in terms of the incoherent processes present in each par-
In order to motivate interest in these generalized Einsteinic;,jar scheme will be obtained.

B coefficients, let us consider, for instance, thescheme of
Fig. 1(d) for the two following well known casedi) A,
—0 with A,B>Ba and (ii) Aa:AB>IB' IV. RELATIONSHIPS BETWEEN THE GENERALIZED

In the first case, only one-photon processes take place EINSTEIN B COEFFICIENTS

since two-photon processes are completely detuned from sjnce, on the one hand, expressig¢@sand (10) and, on

two-photon atomic resonance. The probe attenuation or amhe other hand, expressiofd) and (11), are two different

plification satisfies ways of writing the probe attenuation or amplification con-
dition, they must be proportional and, therefore, one has

starting in statda), following a quantum jump given by the

d A
(ana) :hwana(PaaBab_ PbbBba) P(i,j):CPiiBij ) (14

=hwN,Bap(pPaa— Pob), (120  with c a common constant for all coherent evolution periods
of a given quantum trajectory. Substituting E¢$). and (7)

where we made use of the well known fact that the probabili-In Eq. (14), the generalized Einsteid coefficients read

ties for stimulated emission and absorption are equal in this
case, i.e.B,,=Bpa. The former expression simply states
that net probe amplificatioabsorption occurs for p,,

> pob (Paa<ppb), and transparency fqs,,= pp,. Conven-
tional lasing occurs when the gain associated with the popun what follows, and in order to be more specific, we will
lation inversion p,,— ppp) Overcomes cavity losses. focus our analysis of these generalized EinstBircoeffi-

1 P(i)G;
c

i fom|cij(7)|2d7' (15)

ij
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cients first on théh and V schemes and, eventually, we will
extend the results to the other two schemes.

A. h and V schemes

Using the symmetry propert§9), it is straightforward to
obtain from Eq(15) the relationships between the Einst&in
coefficients for one-photon

Ban  P(a,b) ppp  P(a) Gp ppp

== —= —— 16

Bba P(b,a) paa P(b) Ga paa (18
and two-photon processes

Bac_ P(a,c) Pcc P(a) G¢ pec (17)

Bea P(C,@) paa P(C) Gapaa’

On the other hand, for an intense driving field such tBat
>Rypc, Rep, andA 4 then transitiorjb)-|c) saturates and, in
this case, one has in the steady state

Pbb=Pcc> (18

while, for a weak probe field, the time evolution of the popu-
lation of state|a) is governed by

baa: : =Ebc (Riapii — RaiPaa) (19
which, in the steady state and using E&j7), gives
Rpa+R
ba ca (20)

Paa™ mpbb.

PHYSICAL REVIEW A 63 063810
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FIG. 4. For theh scheme of Fig. (B): (a) Relative value of the
generalized EinsteiB coefficients for one-photon gaiB(y), two-
photon gain B,.), one-photon absorptionBg,), and two-photon
absorption B.,); (b) relative value of the rates for one- and two-
photon gain and loss processes; dodtotal probe responsesee

Let us denote the asymmetry between the Einstein coeffieq. (15 in the tex]. The parameters ar®,,=0.3R,;, Ry,
cients for, on the one hand, one-photon gain and loss pro=0.2Ryc, Rac=0.2Rpc, Rca=0.1Rpc, Rep,=0.2Rpc, Raa=Ryp
cesses, and, on the other hand, two-photon gain and l0ssRcc=0, 8=20R,., Ag=—5R}., anda=0.000 ORy,.

processes byAB,,)™V and (AB,,)™Y, respectively, in such
a way that

Bab

——=1+(ABy)"Y, 21
%=1+(AB v (21b)
B 2pt

ca
Using Eqgs.(5), (8), and(16)—(21), one obtains

RacRba_ RabRca+ ( Rbc_ Rcb)( Rab+ Rac)
Rcb( Rab+ Rac) + Rab( Rba+ Rca) ,
(229

(Rcb_ Rbc) ( Rab+ Rac) - RacRba+ RabRca
Rbc( Rab+ Rac) + Rac( Rba+ Rca)

(ABlp)h’V:

(ABp)"V=
(22b)

sideration and their rate value determine the amount and the
sign of these asymmetries for one- and two-photon pro-
cesses, andii) wheneverAB;,>0 (<0) then AB,,<0
(>0) which means that a “positive” asymmetry between
one-photon gain and loss processes always comes with a
“negative” asymmetry between two-photon gain and loss
processes, and vice versa. Note that, in general,
|(AB1p)™V|#|(ABo) Y.

For theh scheme, Fig. @) shows, through a numerical
integration of Eq.(15) (see Appendix ¢ the relative value
of the generalized Einstel coefficients as a function of the
probe detuning. The parameter settindRig,=0.3R,., Rpa
=0.2Rpc, Rac=0.Rpe, Rea=0.1Rpc, Rep=0.Rye, B
=20Ryc, Ag=—5Ry¢, anda=0.0000Ry,.. For these pa-
rameter values theA(,-independent steady-state popula-
tions arep,,~0.23, ppp,=0.36, andp..~0.41. As expected,
it is clearly seen in Fig. @ that AB;,AB,,<0 and, as
predicted by Egs.(21) and (22), B,,/Bpa=3.2 and

Thus, these expressions quantify the asymmetries betweddy./B.,~0.27 for any probe detuning. Figurébd shows
the Einstein coefficients for stimulated emission and absorpthe individual contributions of the different physical pro-

tion for one- and two-photon gain and loss processes. Twaesses to the probe respongee., fw,n,p;iB

conclusions come from these two expressiaisthe par-

ijy 17]
=a,b,c). The total probe response is plotted in Fidc)4

ticular incoherent processes present in the scheme under coshowing the well known Rabi sidebands or Autler-Townes
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doublet. Notice that, although there is only absorption in the
probe spectrum, for negative detunings g, coefficient
associated with one-photon gain is the largest. In fact, at the
left Rabi sideband, i.e., foh ,~=—7.8R,., the main contri-
bution to the right hand side of E¢10) is given by one-
photon gain processes, while at the right Rabi sideband, i.e.,
for A,=12.8Ry., two-photon absorption processes domi-
nate. Finally, we have checked that the probe response
shown in Fig. 4b) completely agrees with a standard
density-matrix calculation.

Although we have seen thd@,,/By, and B,./B., are

fixed by the relaxation rateR;; of the system under consid- 2 - : -
eration, and therefore do not depend®nA ,, B8, andAg, 0.0 0.5 10 15 20
the individual Einstein coefficient8;; do indeed depend on Rep/Roc

these last parametefas an example of the dependence on

A, see Fig. 48)]. This dependence can be used to enhance FIG. 5. Asymmetry between the generalized Eins@iooeffi-
one-photon processes, and simultaneously decrease twelents for one-photon)B,,) and two-photon processeaB,,) for
photon processes or vice versa. For instance, in the case thle h scheme withR,y, Rpa, Rpa, Rep#0. The rest of ther;; are

Fig. 4, sinceB,,>By, andB,.<B.,, to get the maximum taken as identically zero.

probe absorption one must promote two-photon processes at

the expense of one-photon processes, and this is achieved Bd one has theAB,;,>0 andAB,,<0 for theh scheme
operating near the two-photon resonance conditlopr~ and AB1,<0 and AB,,>0 for the V scheme. Note that
—A, and far from the one-photon resonance conditiop  these last results fully agree with previous discussions in the

~0. context of LWI about the origin of inversionless gain and, in
In order to further analyze Eq$22a and (22b) let us  particular, about the role played by the incoherent processes
consider the following simpler cases. coupled to the driven transitior22,10.
As an example, let us consider tlrescheme with the
1. Two-photon electric dipole forbidden transition following incoherent processes: spontaneous emission from

|a) to |b) and from|b) to|c), and incoherent pumping from

|b) to |a) and from|c) to |b), i.e., Rayp, Rpas Roes Reb

#0. The rest of the rateR;; are taken identically zero and,

therefore, folR,,.> R,y (Rep™> Ry the probeddriven tran-

sition is inverted. Figure 5 shows the asymmetry between the
Rpe— Rep generalized Einstei8 coefficients given by Eq(23). For

(AByp)"V= (238 Rep=Ry there is no symmetry breaking, i.&AB;,=AB;,

Let us take transitioha)-|c) as an electric dipole forbid-
den transition such that spontaneous emission fignto |c)
and incoherent pumping frorft) to |a) can be neglected,
i.e., Rae,Rea~0. Then, Egs(22) read

Roa® Ren =0 since then the medium becomes transparent for the driv-
ing field. For R.,<R,. (drive absorptioh the generalized
(AB,, )= Reb— RbC_ (23b) Einstein B coefficient for one-photon gain overcomes the
P Roc corresponding one for one-photon loss while Ry,> Ry

the generalize® coefficient for two-photon gain overcomes
Clearly the rate differenc®,.— R, determines the sign of that for two-photon loss. Note that these asymmetries do not
the asymmetry between the generalized Einstinoeffi-  depend onR,, although the generalized Einste coeffi-
cients, and, in particular, fdR,.= R, there is no symmetry cients and the corresponding rates for one- and two-photon
breaking. This last case is easily understood by recalling thgirocesses depend indeed &y, through the steady-state
these rates act on the driven transition and, therefore, detepopulations. For thi® scheme, Fig. &) shows the relative
mine also if the medium amplifies, absorbs or, i85,  value of the generalized Einstehcoefficients as a function
=R¢p, becomes transparent for the driving field. Thus, forof the probe field detuning forR,,=0.1R,., Rpa
Rpc=Rep the driving field does not give rise to any asym- =0.08R,., B=7R,., Az=0, and «=0.0000R,.. The
metry in these generalized Einstéhcoefficients. FoiR,.  rest of the rates are zero. For these parameter settings the
#R¢p the sign of the asymmetries depends on whether theteady-state populations agg,,=0.279, pp,=0.349, and
driving field is absorbed or amplified. For thescheme with  p..=0.372. Equations(21) and (23) now give B,,/By,
Roc>Rep (Rpe<R¢p) the driven transition is not inverted =13.5 andB,./B.,=0 in the whole probe spectrum. In fact,
(inverted and then the driving field will be absorbéampli-  as R¢;=0 for all j there are no quantum jumps taking the
fied). On the contrary, for the V scheme witR,.>R;,  system out of statéc), which means that there are no two-
(Rpe<Rcp) the driven transition is inverte¢hot inverted  photon gain processes, i.e., sinGg=0 thenB,.=0 [see
and, therefore, the driving field will be amplifi¢dbsorbef Eq. (15)]. Figure &b) shows the individual contributions of
Thus, what governs the sign of the asymmetry between ththe different physical processes to the probe response. Notice
EinsteinB coefficients is the driving field absorption or am- that the main process at and between the Rabi sidebands is
plification. Commonly, the driven transition is not inverted two-photon absorption, while at the wings of the Rabi side-
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FIG. 6. As in Fig. 4 for the following set of parameteiR;;, FIG. 7. As in Fig. 4 for the following set of paramete;.
:0'1Rb(:1 Rba:O'Ombcr ,B:7Rbc, AB:Ov and @ :0'1RbC’ Rca=0.12?bc, Rcb: O.lZ?bc, B:7Rb0’ ABZO, and
=0.000 OR,. The rest of theR;; are taken as identically zero. a=0.0000R,. The rest of theR;; are taken as identically zero.

bands one-photon gain processes predominate even thougAda=0.000 0Ry.. The steady-state populations read now
there is no one-photon inversion. In fact, the total probe rePaa=0.378, pp,=0.308, andp.=0.315, i.e., sinceR;,
sponse plotted in Fig.(6) shows the possibility of inversion- > Rac there is one-photonpl,> py,p) and two-photon £,
less amplification at the wings of the Rabi sidebands. It is>pcc) Population inversion. The ratio between the Einstein
worth mentioning that inversionless amplification at theseB coefficients read8,,/By,=8.3 andB,./B;;=0.21. No-
additional sidebands has been previously predicted but stitice in Fig. qb) that two-photon absorption is the main pro-

remains to be experimentally observdd,23. cess between the Rabi sidebands in spite of the fact that there
is two-photon population inversion. In fact, the total probe
2. Probing an electric dipole forbidden transition response plotted in Fig.(@ shows absorption between the

For a probe field counling a weak transition. €.d.. an eIeCBabi sidebands. It is worth mentioning that this so-called
tric dipolg forbidden tragsitigon we can tak, ,R 'g;’o in population inversion without amplification or lasing based on
I b:»Nba™

two-photon absorption was proposed very recently as an al-
Egs.(22) and then ternative method t@ switching in order to generate giant
pulses of laser lighf24]. In fact, we see in Fig. () that

(ABlp)h'V:@, (243  there is probe absorption g ,|<3R;, in the presence of
cb population inversion at thia)— |b) transition. It is possible
to extract the energy from this inverted transition in the form
(Asz)h'Vz Ren— Rbc_ (24b) of a Igser pulse by switching off the drive field in the other
Rpct Rea transition[24].
As in the previous case, the sign of the asymmetry between 3. Driving an electric dipole forbidden transition

one- and two-photon gain and loss processes is governed by
the rate differenceR,.— R, that also controls the driving bid
field amplification or absorption.

Again for theh scheme, Fig. (&) shows the relative value
of the generalized Einstem coefficients as a function of the
probe detuning for the following parameter valuds,. (AB, )h,v:RacRLRabRca,
=0.1Rp¢, Rea=0.1Rp¢, Rep=0.1Ryc, B=7Ryc, A5=0, P Rap(Rpat Rea)

Let us consider now a drive field acting on a dipole for-
den transition. In this case, we can taRg.,R.,~0 in
Egs.(22) and therefore

(259
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30 . : . 1 . . . two-photon gain has been observed experimentally very re-
c £ a v cently in a V type system in laser cooled Rb atof2§].
2 ) Bab :.
i:Ej @ 2.0 _;'i ----- Bac ,1_}" ‘i‘,‘ 1
E g ;_; :,,‘1\ lllllll Bba {.,‘;.f B. pand A schemes
E‘i g 10 ioon Bea ;% 1 From Egs.(14) and(15), and using(9), the ratio between
33 S RN the generalized EinsteiB coefficients for one-photon pro-
T 0.0 ke e TTEETmT - cesses reads now
—~ 1.0 ; } f } t f f
2 , _ Ban  P(a,b) ppp  P(a) Gp pop
S o8} (b) [% ——onephotongain | B—: P(b.a) il 5b) G_ _—y (26)
o {5 - - - - two-photon gain NG ba (b,2) paa ( a Paa
S 06L v one-photon loss ‘:',' k L -
Y 04 % c——wophotonloss i\ and for two-photon processes
© 4L o “ / \ b
g o2 A Bep _ P(c,b) ppy _ P(C) Gp pob 27
De_ 0.0 _.;._.._.;;;';,/ o [T N ~\'\-v;';;.;._.._ Bbc P(b,C) Pcc P(b) Gc Pcc
' On the other hand, the steady-state populations read for these
2 00p schemes
5
g Pcc=Paas (283
& 01
k]
R Rab+ Rab
5 Pob=R TR Paa: (28b)
0.2 ba bc
8 6 -4 -2 0 2 4 6 8 which gives
AJR,,
AB. )P A= RbaRch— RabRoc+ (Rea— Rac) (Rpat Rpc)
FIG. 8. As in Fig. 4 for the following set of parameters: ( 1p) - (Rap+ Rac) (Rpat Rpe) '

Rac=0.0R;,, Ra=0.8Ry,, B=8Ry,, Ap=0, and « (299
=0.0000R,;,. The rest of theR;; are taken as identically zero.
(AB )P’Az RabRbc— RbaReb+ (Rac— Rea) (Rpat Rpe)
2p (Rca+ Rcb)(Rba+ Rbc)
(25b (29b)

RabRca_ RacRba

AByy) V=20 2 22
( 2p) Rac( Rba+ Rca)

Again, the generalized EinsteiB coefficients satisfy
AB;p,AB,,<0 with, in general,|AB;,|#|AB,,|. As was
done previously, we will analyze these expressions for the
following three simpler cases.

The rate differenceR,Rpa— RapRca NOW determines the
sign of the symmetry breakings. Moreover, one can increas
one-photon gain asymmetryABlp)h*V by taking, for in-
stance R,,— 0, or, alternatively, two-photon gain asymme-
try (Asz)h*V, for R,c—0. Note, however, that these rates
control also whether there is inversion or not in the probed In this case we tak&,.,R.,~0 and thus
transition. In particular, from Eq(20) for Ryp+ Rac<Rpa

1. Two-photon electric dipole forbidden transition

+ R., the probed transition is inverted. (ABy )P A= Rea= Rac (304
For theh scheme, Fig. 8 shows the relative value of Be 1p R.p+ Rac’

coefficients for the following parameter settingR,.

=0.0R;,, Ra=0.8R;,, B=8R,,, Ag=0, and « Rac— Rea

=0.000 0R,,,. For these values the steady-state populations (AByp)P = TR (30D

read p,,~0.281, p,,=0.361, andp.,~0.358. Therefore,

there is neither one-photon nor two-photon population inveragain, the incoherent processes present in the driven transi-
Bab/Bba:O and Bac/Bca: 51. One haSBabZO because asymmetries'

there are no dissipative processes taking the system out of

state|b). Notice in Fig. 8b) that two-photon gain is the main 2. Probing an electric dipole forbidden transition

process between the Rabi sidebands even though there is no
two-photon population inversion. In fact, the total probe re-
sponse plotted in Fig. (8) shows amplification without R __R
population inversion between the Rabi sidebands. Note that (ABy )P~ —<2__2C
this inversionless gain between the Rabi resonances due to P Rac

Taking R,p,Rp,~0 EQs.(29) become

: (319
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Rac— Rca coefficients in the presence of a standing wave drive configu-
(ABoy)P = R TR (31b  ration. In this case, it is well known that the number of sys-
ca’ Tcb tem states belonging to a given manifold is infin[6]
As in the previous case, the rate differeriRg,— R, deter- ~ Which avoids the possibility of using the analytical tools re-
mines the Sign of the asymmetriesl viewed in Sec. Il. Instead, it is pOSSible to Compute the rela-
tive value of thesd coefficients by performing a numerical
3. Driving an electric dipole forbidden transition analysis of the corresponding quantum-trajectory realizations

Finally, in this case one hag,.,R.;~0 and thus or Monte Carlo simulations.
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Now, the rate differenceR, R.p— RapRpe determines the APPENDIX A

sign of the one-photon and two-photon asymmetries. It is

possible to enhance one-photon gain asymmetry by taking In the limit >2;(Ryi+R.),Az and a<ZRy;, B, the

Rap— 0 or, alternatively, two-photon gain asymmetry by tak- conditional probabilitie€Q(j/i) to start a coherent evolution

ing Rep—0. period in statdj) once the previous one started|if can be
easily obtained by a simple examination of Fig. 2 for the

V. CONCLUSIONS scheme and of the corresponding figures for other three-level
systems. For thé scheme(and also for the V schemeand
We have analyzed closed three-level schemes driven negie to the fact thatr<3;R,; whenever the system starts its
resonance on one transition by an intense TW laser fieldoherent evolution in stafe) there will almost always be a
while probed at an adjacent transition by a weak TW lasefyantum jump from this state) to other states before the

field. We have made use of the quantum-jump formalism tompjitude probability to be in stai®) or |c) becomes sig-
identify and quantify the different physical processes responpjficant. Then,

sible for probe amplification or absorption. By using this

technique, we have defined generalized Einsticoeffi- Q(a/a)"V=R,a/(Raat+ Rap+ Rao), (Ala)
cients for one- and two-photon gain and loss processes show-

ing that, in general, these generaliZzBctoefficients are dif- Q(b/a)™V=R,,/(Raa+ Rap+ Rac), (Alb)
ferent for stimulated emission and absorption both for one-

photon processes and for two-photon processes. We have Q(c/a)™V=R,¢/(Raat+ Rap+ Rac). (Alc)

obtained simple analytical expressions for these asymmetries

between generalized Einstein coefficients for one- and twoOn the other hand, singg>Z;(R,+R.),Az, then when-
photon processes in terms of the rates of the particular incd@Vver the system starts its coherent evolution in sfiajeit
herent processes present in each scheme. Some general préfil evolve in a Rabi oscillatory fashion betweg) and|c)
erties of these generalized Einst@rcoefficients have been With, on average, half of the time in stdtg) and half of the
found, e.g., a “positive” asymmetry between the coefficientstime in statefc), before a quantum jump takes place. There-
for one-photon processes always comes together with tore,

“negative” asymmetry between the coefficients for two-

photon processes, and vice versa. All these analytical results Q(a/b)V= Rpat Rea

have been tested by a numerical calculation of the relative Rpat Reat Ropt+ RepT Rpet Ree’
value of these generalized Einsteéincoefficients. In addi- (Ald)
tion, it has also been verified that the probe response given

by theseB coefficients completely agrees with that obtained Rop+ Rep

hV_
from a standard density-matrix analysis. Finally, some very Q(b/b) Rpat Reat Ropt+ RepT Rpet Ree’

well known phenomena occurring in coherently driven three- (Ale)
level systems, such as amplification without inversion or in-
version without amplification, have been discussed in terms
of the asymmetries between these generalized EinBtem+
efficients.

An extension of the analysis presented in this paper t@nd exactly the same if the system starts its coherent evolu-
open or multilevel systems is straightforward provided thation in |c):
the required conditions mentioned in the Introduction for the
applicability of the quantum-jump technique are satisfied. Q(alc)™V= Rbat Rea
However, it seems more difficult to obtain analytical expres- Rpat Reat Ropt Rept Ryt Ree’
sions for the relative value of these generalized EinsBein (Alg)

Rbc+ Rcc

Q(c/b)MV=
Rba+ Rca+ Rbb+ Rcb+ I:zbc"" Rcc

. (ALf)
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Q(blc)V Rbbt Rep
Rba+ Rca+ Rbb+ Rcb+ Rbc+ Rcc’
(A1h)
Ry,.+R
Q(cle)MV= SRAL . (Ali)

a Rba+ Rca+ Rbb+ Rcb+ Rbc+ I:ecc

Notice that Eqs(Ald)—(Ali) remain valid even for a weak
driving field provided thaRy;=0 for all j (or, alternatively,

R¢j=0 for all j), since then the system cannot leave any

multiplicity ¢ from state|b) (or, alternatively, from state
c).

For the p and A schemes in the limitB>Z;(Ry;
+Rci),Ag and a<ZRy;, B, these conditional probabilities
read

Q(a/b)P*=Rya/(Rya+ Rppt Rpe), (A2a)
Q(b/b)PA=Rpp/(Ryat Rpp+ Rpe), (A2b)
Q(c/b)P*=Ryc/(Ryat Rpp+ Rpe), (A20)
R,,TR
ala)P*=Q(alc)Pr= aa__ca ,
Q( ) Q( ) Raa+ Rca+ Rab+ I:zcb"" Rac+ Rcc
(A2d)
b/a)P*=Q(b/c)P = 2 ,
Q( ) Q( ) Raa+ Rca+ Rab+ Rcb+ Rac+ Rcc
(A2¢)
R,.+ R
c/a)Pr=Q(c/c)Pr= ac <t .
Q( ) Q( ) Raa+ Rca+ Rab+ Rcb+ Rac+ Rcc
(A2f)

In this case, Eqs(A2d)—(A2f) are still valid for a weak
driving field provided thaR,;=0 for all j or, alternatively,
R¢;=0 for all j.

Finally, note that the conditional probabilities given in
Egs.(Al) and(A2) do not depend on the laser paramef@ys
Ag, a, andA,, and, consequently, neither will the prob-
abilities P(i) obtained from the recursive relationshigi)
=2;P(j)Q(i/j) depend on these parameters.

APPENDIX B

The effective non-Hermitian Hamiltonians for the four
three-level schemes under investigation [ate

Ga
_(Aa‘l‘A'B)_I? al? 0
Gy
Ge
0 /2 —i—=
B 5

(Bla)

PHYSICAL REVIEW A 63 063810

G
—Aa—i7a al2 0
Gp
H\e/ff:h a/2 —I? B/Z s
G¢
0 12 —A,—i—
B Ag |2
(B1b)
G
—A,—i— a2 BI2
2
G
HP =4 al2 i 0 ,
2
G
12 0o - B
B (A +Ap) =i
(Blo)
and
G
—Aﬁ—i7a al? BI2
. “b
Herr= al2 (Ag=Ap)—i— 0
G
/2 0 B
B i
(B1d)
APPENDIX C

For theh scheme, the time evolution of the complex am-
plitude probabilitiesc;;(7) =x;;(7) +iy;;(7) is determined
by the Hamiltonian given in EqB1a) and reads

. a
Xaa= = 5 Xaa~ (84T Ap)Yaat 5Var,  (Cla
. G, a
Yaa™ — Tyaa_*' (A, + A,B)Xaa_ Exaba (C1b
. Gb o ﬂ
Xbb= "5 Xob~ ApYont 5 Vant 5 Vbe,  (C1O
. Gb o ﬁ
Yob=" 7 Yoot AgXbp™ 5 Xap™ 5Xes  (C1d
B
Xee™ — TCXCC"' Eyva (Cle
. G B
Yee™ — 7Cycc_ EXbCi (C19)
. Gb o B
Xap= — ?Xab_ Aﬁyab+ Eyaa+ Eyac ) (Clg
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. Gb (24 B - GC B

Yab= — 7yab+ Aﬁxab_ Exaa_ EXaC! (C1h Ybe= — 7ybc_ Exbb- (C1l
_ G. B where we have made use of E(@) and G,=R,,+Rap
Xac= — 7Xac+ Eyab, (Cll) +Rac, Gb: Rba+ Rbb+ RbC! and GC:Rca+ Rcb+ Rcc. In

order to calculate th®;; coefficients given in Eq(15) we
have integrated Eq4C13—(C1l) by using a Runge-Kutta-
Vac= — %y — éx b (C1j) Fehlberg routine of orders seventh to eighth and then divided
ae 278 27a the result by the corresponding atomic population. Note that,
due to the presence of dissipation;(7),y;j(7)—0 in an

: Gc B exponential way which, in fact, guarantees the convergence
=— —Xpect+ = Ybb» Cik o ’ '
Xpe 5 Xbet 5 Vb C & [3lcy(n)]%dr.
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