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Generalized EinsteinB coefficients for coherently driven three-level systems
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Generalized EinsteinB coefficients for coherently driven closed three-level systems are introduced by means
of the quantum-jump technique. The nonreciprocity between stimulated emission and absorption for both
one-photon and two-photon gain and loss processes has been studied and quantified in terms of the rates of the
particular incoherent processes present in each three-level system. Some general properties of these generalized
Einstein B coefficients have been found. In particular, whenever the generalized EinsteinB coefficient for
one-photon gain overcomes that for one-photon loss then the generalized EinsteinB coefficient for two-photon
loss overcomes that for two-photon gain, and vice versa. Finally, we have obtained simple analytical expres-
sions indicating the way to maximize the asymmetry between stimulated emission and absorption coefficients
either for one-photon or for two-photon processes.
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I. INTRODUCTION

The combination of Bohr’s atomic model with a stocha
tic conception of the light-matter interaction allowed Ei
stein~1916-1917! to determine, in the context of his study o
blackbody radiation, the relationship between the rates
absorption and stimulated emission of light by a gas at
possessing discrete energy levels, in terms of the so-ca
EinsteinB coefficients@1#. In the framework of perturbation
theory, equalB coefficients for absorption and stimulate
emission between two nondegenerate levels were obtai
These coefficients together with the EinsteinA coefficient
accounting for spontaneous emission allowed Einstein to
tablish rate equations governing the atomic populations
light propagation through an atomic medium. Thus, acco
ing to Einstein theory, the atomic population differences
termine the light attenuation or amplification by the atom
medium. In particular, as is shown in any standard laser t
book, the equality between stimulated emission and abs
tion B coefficients implies the well known population inve
sion condition for light amplification.

Nevertheless, this preliminary picture of the light-mat
interaction in terms of the Einstein coefficients no long
holds in the presence of a nonperturbative interaction suc
that produced by a laser field. In this case, the Schro¨dinger
equation must be solved nonperturbatively for a suitable
scription of the interaction with the laser field. Unfortu
nately, a pure Schro¨dinger evolution does not succeed
describing the irreversibility associated with dissipation, e
in the presence of spontaneous emission. The Schro¨dinger
equation can no longer describe, in general, the dynamic
a system consisting of an atom in interaction with a coher
field and subjected to dissipative processes.

In the presence of both coherent and incoherent proces
the standard procedure is the application of Langevin the
to the quantum mechanical system, resulting in a theory
generalizes the Einstein and Schro¨dinger approaches. Thi
results in a reduced density matrix that gives a quantita
description of the behavior of the system but does not p
vide, in general, a clear physical interpretation of the parti
lar mechanisms involved in the light-matter interaction.
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the presence of intense laser fields, the density-matrix
malism suggests, for instance, that light amplification or
tenuation by the medium is no longer determined by
population differences alone, which, in turn, suggests a n
equality between the probabilities of the reverse processe
stimulated emission and absorption.

For many years, different efforts have been made to
compose the reduced density-matrix evolution into pure s
evolution. In the last decade, different stochastic decomp
tions of the density-matrix were proposed based on the in
play of a Schro¨dinger evolution accounting for the continu
ous evolution associated with the coherent interaction,
wave-function collapses or quantum jumps associated w
dissipation @2–5#. Recalling Einstein theory, all these ap
proaches were based on a stochastic conception of the l
matter interaction to describe dissipation. Thus, the time e
lution of the wave function of a single atom, a so-call
quantum trajectory, consists of a series of continuous co
ent evolution periods separated by quantum jumps or wa
function collapses occurring at random times. The conti
ous evolution is calculated by intregrating the Schro¨dinger
equation using an effective non-Hermitian Hamiltoni
while quantum jumps occurring at random times account
the irreversibility associated with dissipation. This quantu
trajectory formalism, which is indeed equivalent to the us
description in terms of optical Bloch equations when av
aged over many realizations of the trajectories, is interes
for at least two different reasons:~i! in the wave-function
treatment of a system belonging to anN-dimensional Hilbert
space the number of variables isN while in the density ma-
trix it is N2, and~ii ! it provides new insights into the unde
lying physical mechanisms involved in the light-matter inte
action. In fact, the quantum-trajectory approach has b
applied with success to a large number of problems in qu
tum optics@6,7#.

Based on the quantum-trajectory formalism and using
method of delay functions@8# previously introduced to study
the fluorescence of single atomic systems, Cohen-Tanno
et al. @7# derived general statistical properties of the coher
evolution periods occurring between two successive qu
tum jumps. These statistical tools provide, without the nec
©2001 The American Physical Society10-1
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FIG. 1. Closed three-level sys
tems under investigation:~a! h, ~b!
V, ~c! p, and ~d! L schemes.a
and Da (b and Db) are the Rabi
frequency and detuning of the
probe ~driving! TW laser field.
The ratesRi j with i , j 5a,b,c ac-
count for the incoherent processe
present in each particular schem
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sity of explicitly performing a quantum-trajectory or Mon
Carlo simulation,~semi!analytical expressions for the contr
bution of the different physical processes responsible for
attenuation or amplification of a laser field in interaction w
an atomic medium. For these techniques to be applica
two conditions are required:~i! the number of relevan
atomic states involved in dissipative processes has to b
nite, and~ii ! the Hamiltonian has to be time independe
Using these statistical tools, Arimondo@9# and Cohen-
Tannoudjiet al. @7# revealed that inversionless amplificatio
in the so-called V- andL-type three-level systems resul
from the fact that, for appropriate parameter values, tw
photon gain processes overcome one- and two-photon
processes even with population inversion at neither the o
photon transition nor the two-photon transition. On the co
trary, one-photon gain is the physical process responsible
inversionless amplification in cascade three-level syste
@10,11#, also with neither one- nor two-photon populatio
inversion@12#. In addition, Carmichael@13# has recently pre-
sented an extensive analysis of the origin of inversionl
gain in the V scheme where lasing without inversion w
observed for the first time@14#. Finally, these technique
have also allowed an explanation of inversionless amplifi
tion in terms of the quantum Zeno effect@15#.

In this paper, we will use the statistical tools developed
Cohen-Tannoudji and co-workers@7# to introduce general-
ized EinsteinB coefficients for one- and two-photon gain an
loss processes in coherently driven three-level syste
These coefficients will allow us to quantify in simple an
lytical expressions the nonreciprocity between stimula
emission and absorption for one- and two-photon proces
Some general properties of the asymmetry between the
eralized EinsteinB coefficients for both one-photon pro
cesses and two-photon processes will be obtained. Fin
some indications to maximize these asymmetries in term
the rates of the incoherent processes present in each sc
will be given.
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Section II introduces the coherently driven closed thr
level systems under investigation and reviews the quant
jump technique used to describe the interaction of th
three-level systems with laser fields in the presence of di
pation. Thus, by using the quantum-jump formalism, gen
alized EinsteinB coefficients for one- and two-photon ga
and loss processes are defined in Sec. III. Section IV
cusses some general properties of these generalized Ein
B coefficients. Finally, the main results of this paper a
summarized in the Conclusions.

II. MODEL AND REVIEW OF THE QUANTUM-JUMP
FORMALISM

Let us consider the four closed three-level schemes sh
in Fig. 1 which, in the following, we will call ash @Fig. 1~a!#,
V @Fig. 1~b!#, p @Fig. 1~c!#, and L @Fig. 1~d!#. In each of
these schemes a weak traveling wave~TW! probe laser with
Rabi frequencya and detuningDa5va2vab couples to
transitionua&-ub& while an intense TW laser field with Rab
frequencyb and detuningDb drives the adjacent transition
Dissipative processes are described by means of the pop
tion transfer ratesRi j with i , j 5a,b,c. Thus,Ri j with iÞ j
accounts for, e.g., spontaneous emission, incoherent pu
ing, or inelastic collisions transferring atoms from levelu i & to
level u j &, while Rii describes dipole dephasing due to, e.
elastic collisions or finite laser linewidth@16#. Although ini-
tially Ri j with iÞ j can account only for one-way incohere
pumping processes, it is straightforward to describe bidir
tional pumping in these schemes. For instance, let us de
by L the rate of a bidirectional pumping process coupled
transition ua&-ub& for the h scheme of Fig. 1~a!; then Rab
5L1gab and Rba5L with gab the spontaneous emissio
rate fromua& to ub&.

In what follows, let us consider a quantum description
both laser fields, whereNa andNb are the photon number
of probe and drive laser modes, respectively. In the quant
0-2
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GENERALIZED EINSTEINB COEFFICIENTS FOR . . . PHYSICAL REVIEW A 63 063810
jump formalism, the time evolution of the total system~atom
plus laser fields!, a so-called quantum trajectory, is calc
lated by integrating the time-dependent Schro¨dinger equation
using an effective non-Hermitian Hamiltonian. Incohere
processes produce random quantum jumps that collapse
wave function to a single state. Thus a quantum traject
consists of a series of coherent evolution periods separ
by quantum jumps occurring at random times.

To be specific, Fig. 2 shows, for theh scheme of Fig. 1~a!,
the states of the total system~atom plus laser photons!
grouped into different manifolds, the elliptical regions d
noted byj, of three~quasi!degenerate states:

j~Nb1m,Na1n![H $ua,Nb1m,Na1n&

ub,Nb1m,Na111n&

uc,Nb111m,Na111n&%,

~1!

with m,n50,61,62, . . . . Inthis figure, the different mani-
folds are displayed from bottom to top according to the
crease in the total energy of the system with the assump
uva2vbu!va ,vb . The horizontal solid arrows represe
the laser interaction while the oblique and circular dash
arrows account for dissipative processes. After a quan
jump has just occurred, the system starts its evolution in
state of some manifold and, due to the interaction with
laser fields, evolves continuously between the three state
the given manifold in a Rabi oscillatory fashion. This cohe
ent evolution lasts until a quantum jump associated w
some kind of dissipation interrupts the continuous evoluti
As a general feature, dissipative processes associated
Ri j with iÞ j correspond to quantum jumps connecting d
ferent manifolds while those associated withRi j with i 5 j

FIG. 2. Different manifoldsj(Nb6m,Na6n) of the three
~quasi!degenerate states of the total system~atom plus laser fields!
for theh scheme of Fig. 1~a!. Na andNb are the photon numbers i
the probe and driving modes, respectively. The solid horizontal
rows represent the continuous evolution given by the laser inte
tion, while the dashed oblique and circular arrows represent
quantum jumps produced by the dissipative processes.
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yield a new coherent evolution period in the same manif
as the previous one@16#. After the quantum jump occurs, th
continuous evolution resumes again. An illustrative exam
of a quantum trajectory could be, for instance,

•••→
Rbc

j~Nb21,Na21!→
Rca

j~Nb ,Na!

→
Rbb

j~Nb ,Na!→
Rbc

j~Nb21,Na!→
Rab

••• .

Let us now label the continuous coherent evolution perio
between two successive quantum jumps, which will be ca
period (i , j ), by the atomic stateu i & in which the system
starts the coherent evolution and the atomic stateu j & from
which the quantum jump takes place at the end of this
riod. Then, a stochastic quantum trajectory has the gen
form

•••Ri j period~ j ,k!Rklperiod~ l ,m!Rmn•••,

with i , j ,k,l ,m,n5a,b,c. In all closed three-level system
under investigation, there are up to nine possible cohe
evolution periods. These periods are characterized by w
defined changes in the laser field photon number altho
only in four of them does the probe photon number chan
In particular, for theh and V schemes of Figs. 1~a! and 1~b!
these four coherent evolution periods involving a chan
DNa561 in the number of probe photons are

period~a,b!→DNa511, DNb50→one-photon gain,

period~b,a!→DNa521, DNb50→one-photon loss,

period~a,c!→DNa511,

DNb511→two-photon gain,

period~c,a!→DNa521, DNb521→two-photon loss.

Two different probe gain~loss! processes are therefore ide
tified in the quantum-jump formalism. A coherent evolutio
starting in ua&(ub&) and ending inub&(ua&) represents a
stimulated one-photon emission~absorption! process. If the
coherent evolution starts inua&(uc&) and ends inuc&(ua&) it
represents a two-photon emission~absorption! process.

Therefore, for theh and V schemes, the mean change
the probe photon number per period is given by

^DNa&h,V5P~a,b!1P~a,c!2P~b,a!2P~c,a!, ~2!

with P( i , j ) the probability that a random choice among
coherent evolution periods of the stochastic quantum tra
tory gives the period (i , j ). For thep and L schemes, the
mean change of the probe photon number per coherent
lution period reads

^DNa&p,L5P~a,b!1P~c,b!2P~b,a!2P~b,c!. ~3!

The physical processes responsible for probe field amplifi
tion ~absorption! are now one-photon stimulated emissio
~absorption! and two-photon processes with emission~ab-

r-
c-
e
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J. MOMPART AND R. CORBALÁN PHYSICAL REVIEW A 63 063810
sorption! of a probe photon and emission~absorption! for the
p scheme and absorption~emission! for the L scheme of a
drive photon.

Note that the mean change in the probe photon num
per unit time relates to the mean change per period
^dNa /dt&5^DNa&/T whereT is the average time betwee
two consecutive quantum jumps@see Eqs.~4.11! and ~4.16!
in Ref. @7##. In order to evaluate the probability of each o
of these coherent evolution periods it is convenient to s
the probability P( i , j ) into the probability that a coheren
evolution period starts in stateu i &, denoted byP( i ), times the
conditional probability that a period starting in stateu i & ends
its coherent evolution in stateu j &, denoted byP( j / i ):

P~ i , j !5P~ i !P~ j / i !. ~4!

The probabilitiesP( i ) satisfy the normalization condition
( i P( i )51. To evaluate these probabilities one needs
make use of the recursive relationshipP( i )5( j P( j )Q( i / j ),
whereQ( i / j ) is the conditional probability of starting a pe
riod in stateu i & once the previous one started in stateu j &.
These conditional probabilities fulfill the conditio
( iQ( i / j )51 for all j. The explicit values of these cond
tional probabilities for the four schemes under investigat
can be found in Appendix A.

For simplicity, we will restrict ourselves to the case
which there are no dipole dephasing processes, i.e., the
called radiative limit. In this caseRii 50 for all i and atomic
dipoles dephase only through the termsRi j ~see@16#!. Note,
however, that the inclusion ofRii in the subsequent result
would be straightforward. For theh and V schemes, in the
limit b@( i(Rbi1Rci),Db anda!( iRai ,b, using Eq.~A1!
with Rii 50 (i 5a,b,c), and the former recursive relation
ship for the probabilitiesP( i ), one obtains

P~a!h,V5
~Rab1Rac!~Rba1Rca!

D
, ~5a!

P~b!h,V5
RacRcb1Rab~Rba1Rca1Rcb!

D
, ~5b!

P~c!h,V5
RabRbc1Rac~Rba1Rca1Rbc!

D
, ~5c!

whereD5(Rab1Rac)@2(Rba1Rca)1Rbc1Rcb#. For thep
and L schemes, in the limitb@( i(Rai1Rci),Db and a
!( iRbi ,b, and using Eq.~A2! with Rii 50, one has

P~a!p,L5
Rca~Rba1Rbc!1Rba~Rab1Rcb!

E
, ~6a!

P~b!p,L5
~Rba1Rbc!~Rab1Rcb!

E
, ~6b!

P~c!p,L5
Rac~Rba1Rbc!1Rbc~Rab1Rcb!

E
, ~6c!

where E5(Rba1Rbc)@2(Rab1Rcb)1Rac1Rca#. As stated
in Appendix A, the conditional probabilitiesQ( i / j ) and,
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therefore, the probabilitiesP( i ) given in Eqs.~5! and~6! still
remain valid even for a weak driving field provided that~i!
Rb j for all j or, alternatively,Rc j50 for all j ~for h and V
schemes!; or ~ii ! Ra j for all j, or, alternatively,Rc j50 for all
j ~for p andL schemes!.

On the other hand, the conditional probabilitiesP( j / i )
can be written as@7#

P~ j / i !5GjE
0

`

uci j ~t!u2dt, ~7!

whereGj is the departure rate from stateu j & of any manifold
due to all possible sources of dissipation:

Gj5(
i

Rji , ~8!

andci j (t)5^ j uexp(2iHef ft/\)ui& is the probability amplitude
to find the system in stateu j & at timet1t once the coheren
evolution period started at timet in state u i & of the same
manifold. The effective non-Hermitian HamiltonianHe f f for
the four three-level schemes of Fig. 1 can be found in A
pendix B. SinceHe f f

† 5He f f* for all four schemes, the prob
ability amplitudes satisfy the symmetry property

ci j 5cji , ~9!

as shown in Ref.@7#.

III. FUNCTIONAL DEFINITION OF THE GENERALIZED
EINSTEIN B COEFFICIENTS

Once the physical processes responsible for probe am
fication or attenuation have been identified and the respec
contributions have been calculated, it is straightforward
define in the Einstein spirit four differentB coefficients for
one- and two-photon gain and loss processes. Thus, for th
and V schemes, a functional definition of these generali
EinsteinB coefficients is

S d

dt
naD h,V

5\vana~raaBab1raaBac2rbbBba2rccBca!,

~10!

wherena is the number of photons per unit volume in th
probe mode.naraaBab andnarbbBba account for the rates o
one-photon gain and loss processes, andnaraaBac and
narccBca for two-photon gain and loss processes, resp
tively. For thep and L schemes, this functional definitio
reads

S d

dt
naD p,L

5\vana~raaBab1rccBcb2rbbBba2rbbBbc!,

~11!

with naraaBab and narbbBba accounting for the rates o
one-photon gain and loss processes, andnarccBcb and
narbbBbc for the rates of two-photon gain and loss pr
cesses, respectively.
0-4
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The meaning of these generalized EinsteinB coefficients
can be easily understood with the help of Fig. 3. As shown
Fig. 3~a!, the term involving theBab coefficient accounts for
the rate corresponding to the summation of all proces
starting in stateua&, following a quantum jump given by the
incoherent processRia ( i 5a,b,c), and ending in stateub&
through a quantum jump given byRb j ( j 5a,b,c). In all
these one-photon gain processes the energy exchang
tween the atom and the two coherent fields satisfiesDNa5
11 with DNb50 irrespective of the explicit number of driv
ing photons involved in the interaction. Figure 3~b! illus-
trates schematically the meaning of the generalized Eins
Bac coefficient for two-photon gain processes.

In order to motivate interest in these generalized Eins
B coefficients, let us consider, for instance, theL scheme of
Fig. 1~d! for the two following well known cases:~i! Da
50 with Db@b, and~ii ! Da5Db@b.

In the first case, only one-photon processes take p
since two-photon processes are completely detuned f
two-photon atomic resonance. The probe attenuation or
plification satisfies

S d

dt
naD L

5\vana~raaBab2rbbBba!

5\vanaBab~raa2rbb!, ~12!

where we made use of the well known fact that the probab
ties for stimulated emission and absorption are equal in
case, i.e.,Bab5Bba . The former expression simply state
that net probe amplification~absorption! occurs for raa
.rbb (raa,rbb), and transparency forraa5rbb . Conven-
tional lasing occurs when the gain associated with the po
lation inversion (raa2rbb) overcomes cavity losses.

FIG. 3. Schematic respresentation of~a! one-photon gain pro-
cesses and~b! two-photon gain processes for theh scheme of Fig.
1~a!. The thin~thick! line represents the interaction with the pro
~driving! field. In all three processes shown in~a! the atom under-
goes a transition from stateua& to stateub& with an energy exchange
between the atom and the fieldsDNa511 andDNa50. Ria is a
quantum jump that brings the atom to stateua& andRb j a quantum
jump that takes the atom out of stateub&. ~b! The same for two-
photon gain processes withRc j a quantum jump that takes the ato
out of stateuc&. naraaBab andnaraaBac are the rates of one- an
two-photon gain processes, withBab andBac the generalized Ein-
steinB coefficients for one- and two-photon gain, respectively.
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In the second case, only two-photon processes take p
in the L scheme. The equation that governs probe atten
tion or amplification now becomes:

S d

dt
naD L

5\vana~rccBcb2rbbBbc!

5\vanaBcb~rcc2rbb!, ~13!

with Bcb5Bbc in this case due to the equality between t
probabilities for two-photon stimulated emission and abso
tion. Now, the sign of the two-photon population differen
determines the behavior of the medium. Forrcc2rbb.0
(,0) there is net probe amplification~absorption! while
probe transparency occurs forrcc5rbb . In fact, theL sys-
tem can operate as a Stokes~or anti-Stokes! Raman laser
when a large enough two-photon population inversion
curs.

In these two cases probe amplification or absorption
curs depending on whether there is population inversion
not. Nevertheless, it is well known that three-level syste
driven close to resonance, i.e., forb@Db , present unusua
features that cannot be explained in terms of population
ferences alone@17#, e.g., coherent population trapping@18#,
electromagnetically induced transparency@19#, amplification
or lasing without population inversion@20#, and population
inversion without amplification or lasing@21#. We are inter-
ested here in this laser-matter interaction regime for wh
both one- and two-photon processes are present at sim
rates and where the occurrence of a process or its rev
does not depend only on the population differences betw
the levels connected. By using the generalized EinsteiB
coefficients defined in Eqs.~10! and ~11!, we will explicitly
demonstrate and quantify a symmetry breaking~i.e., Bi j
ÞBji ) between, on the one hand, one-photon gain and
processes, and, on the other hand, two-photon gain and
processes. Simple quantitative expressions for this asym
try in terms of the incoherent processes present in each
ticular scheme will be obtained.

IV. RELATIONSHIPS BETWEEN THE GENERALIZED
EINSTEIN B COEFFICIENTS

Since, on the one hand, expressions~2! and ~10! and, on
the other hand, expressions~3! and ~11!, are two different
ways of writing the probe attenuation or amplification co
dition, they must be proportional and, therefore, one has

P~ i , j !5cr i i Bi j , ~14!

with c a common constant for all coherent evolution perio
of a given quantum trajectory. Substituting Eqs.~4! and ~7!
in Eq. ~14!, the generalized EinsteinB coefficients read

Bi j 5
1

c

P~ i !Gj

r i i
E

0

`

uci j ~t!u2dt. ~15!

In what follows, and in order to be more specific, we w
focus our analysis of these generalized EinsteinB coeffi-
0-5
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cients first on theh and V schemes and, eventually, we w
extend the results to the other two schemes.

A. h and V schemes

Using the symmetry property~9!, it is straightforward to
obtain from Eq.~15! the relationships between the EinsteinB
coefficients for one-photon

Bab

Bba
5

P~a,b!

P~b,a!

rbb

raa
5

P~a!

P~b!

Gb

Ga

rbb

raa
~16!

and two-photon processes

Bac

Bca
5

P~a,c!

P~c,a!

rcc

raa
5

P~a!

P~c!

Gc

Ga

rcc

raa
. ~17!

On the other hand, for an intense driving field such thab
@Rbc , Rcb , andDb then transitionub&-uc& saturates and, in
this case, one has in the steady state

rbb.rcc , ~18!

while, for a weak probe field, the time evolution of the pop
lation of stateua& is governed by

ṙaa5 (
i 5b,c

~Riar i i 2Rairaa!, ~19!

which, in the steady state and using Eq.~17!, gives

raa.
Rba1Rca

Rab1Rac
rbb. ~20!

Let us denote the asymmetry between the Einstein co
cients for, on the one hand, one-photon gain and loss
cesses, and, on the other hand, two-photon gain and
processes by (DB1p)h,V and (DB2p)h,V, respectively, in such
a way that

Bab

Bba
511~DB1p!h,V, ~21a!

Bac

Bca
511~DB2p!h,V. ~21b!

Using Eqs.~5!, ~8!, and~16!–~21!, one obtains

~DB1p!h,V.
RacRba2RabRca1~Rbc2Rcb!~Rab1Rac!

Rcb~Rab1Rac!1Rab~Rba1Rca!
,

~22a!

~DB2p!h,V.
~Rcb2Rbc!~Rab1Rac!2RacRba1RabRca

Rbc~Rab1Rac!1Rac~Rba1Rca!
.

~22b!

Thus, these expressions quantify the asymmetries betw
the Einstein coefficients for stimulated emission and abso
tion for one- and two-photon gain and loss processes. T
conclusions come from these two expressions:~i! the par-
ticular incoherent processes present in the scheme under
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sideration and their rate value determine the amount and
sign of these asymmetries for one- and two-photon p
cesses, and~ii ! wheneverDB1p.0 (,0) then DB2p,0
(.0) which means that a ‘‘positive’’ asymmetry betwee
one-photon gain and loss processes always comes wi
‘‘negative’’ asymmetry between two-photon gain and lo
processes, and vice versa. Note that, in gene
u(DB1p)h,VuÞu(DB2p)h,Vu.

For theh scheme, Fig. 4~a! shows, through a numerica
integration of Eq.~15! ~see Appendix C!, the relative value
of the generalized EinsteinB coefficients as a function of the
probe detuning. The parameter setting isRab50.3Rbc , Rba
50.2Rbc , Rac50.2Rbc , Rca50.1Rbc , Rcb50.2Rbc , b
520Rbc , Db525Rbc , anda50.000 02Rbc . For these pa-
rameter values the (Da-independent! steady-state popula
tions areraa.0.23, rbb.0.36, andrcc.0.41. As expected,
it is clearly seen in Fig. 4~a! that DB1pDB2p,0 and, as
predicted by Eqs. ~21! and ~22!, Bab /Bba.3.2 and
Bac /Bca.0.27 for any probe detuning. Figure 4~b! shows
the individual contributions of the different physical pro
cesses to the probe response~i.e., \vanar i i Bi j , iÞ j
5a,b,c). The total probe response is plotted in Fig. 4~c!
showing the well known Rabi sidebands or Autler-Town

FIG. 4. For theh scheme of Fig. 1~a!: ~a! Relative value of the
generalized EinsteinB coefficients for one-photon gain (Bab), two-
photon gain (Bac), one-photon absorption (Bba), and two-photon
absorption (Bca); ~b! relative value of the rates for one- and two
photon gain and loss processes; and~c! total probe response@see
Eq. ~15! in the text#. The parameters areRab50.3Rbc , Rba

50.2Rbc , Rac50.2Rbc , Rca50.1Rbc , Rcb50.2Rbc , Raa5Rbb

5Rcc50, b520Rbc , Db525Rbc , anda50.000 02Rbc .
0-6
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doublet. Notice that, although there is only absorption in
probe spectrum, for negative detunings theBab coefficient
associated with one-photon gain is the largest. In fact, at
left Rabi sideband, i.e., forDa.27.8Rbc , the main contri-
bution to the right hand side of Eq.~10! is given by one-
photon gain processes, while at the right Rabi sideband,
for Da.12.8Rbc , two-photon absorption processes dom
nate. Finally, we have checked that the probe respo
shown in Fig. 4~b! completely agrees with a standa
density-matrix calculation.

Although we have seen thatBab /Bba and Bac /Bca are
fixed by the relaxation ratesRi j of the system under consid
eration, and therefore do not depend ona, Da , b, andDb ,
the individual Einstein coefficientsBi j do indeed depend on
these last parameters@as an example of the dependence
Da see Fig. 4~a!#. This dependence can be used to enha
one-photon processes, and simultaneously decrease
photon processes or vice versa. For instance, in the cas
Fig. 4, sinceBab.Bba andBac,Bca , to get the maximum
probe absorption one must promote two-photon processe
the expense of one-photon processes, and this is achieve
operating near the two-photon resonance conditionDa'
2Db and far from the one-photon resonance conditionDa
'0.

In order to further analyze Eqs.~22a! and ~22b! let us
consider the following simpler cases.

1. Two-photon electric dipole forbidden transition

Let us take transitionua&-uc& as an electric dipole forbid
den transition such that spontaneous emission fromua& to uc&
and incoherent pumping fromuc& to ua& can be neglected
i.e., Rac ,Rca'0. Then, Eqs.~22! read

~DB1p!h,V.
Rbc2Rcb

Rba1Rcb
, ~23a!

~DB2p!h,V.
Rcb2Rbc

Rbc
. ~23b!

Clearly the rate differenceRbc2Rcb determines the sign o
the asymmetry between the generalized EinsteinB coeffi-
cients, and, in particular, forRbc5Rcb there is no symmetry
breaking. This last case is easily understood by recalling
these rates act on the driven transition and, therefore, d
mine also if the medium amplifies, absorbs or, forRbc
5Rcb , becomes transparent for the driving field. Thus,
Rbc5Rcb the driving field does not give rise to any asym
metry in these generalized EinsteinB coefficients. ForRbc
ÞRcb the sign of the asymmetries depends on whether
driving field is absorbed or amplified. For theh scheme with
Rbc.Rcb (Rbc,Rcb) the driven transition is not inverte
~inverted! and then the driving field will be absorbed~ampli-
fied!. On the contrary, for the V scheme withRbc.Rcb
(Rbc,Rcb) the driven transition is inverted~not inverted!
and, therefore, the driving field will be amplified~absorbed!.
Thus, what governs the sign of the asymmetry between
EinsteinB coefficients is the driving field absorption or am
plification. Commonly, the driven transition is not inverte
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and one has thenDB1p.0 andDB2p,0 for the h scheme
and DB1p,0 and DB2p.0 for the V scheme. Note tha
these last results fully agree with previous discussions in
context of LWI about the origin of inversionless gain and,
particular, about the role played by the incoherent proces
coupled to the driven transition@22,10#.

As an example, let us consider theh scheme with the
following incoherent processes: spontaneous emission f
ua& to ub& and fromub& to uc&, and incoherent pumping from
ub& to ua& and from uc& to ub&, i.e., Rab , Rba , Rbc , Rcb
Þ0. The rest of the ratesRi j are taken identically zero and
therefore, forRba.Rab (Rcb.Rbc) the probed~driven! tran-
sition is inverted. Figure 5 shows the asymmetry between
generalized EinsteinB coefficients given by Eq.~23!. For
Rcb5Rbc there is no symmetry breaking, i.e.,DB1p5DB2p
50 since then the medium becomes transparent for the d
ing field. For Rcb,Rbc ~drive absorption! the generalized
Einstein B coefficient for one-photon gain overcomes t
corresponding one for one-photon loss while forRcb.Rbc
the generalizedB coefficient for two-photon gain overcome
that for two-photon loss. Note that these asymmetries do
depend onRab although the generalized EinsteinB coeffi-
cients and the corresponding rates for one- and two-pho
processes depend indeed onRab through the steady-stat
populations. For thish scheme, Fig. 6~a! shows the relative
value of the generalized EinsteinB coefficients as a function
of the probe field detuning forRab50.1Rbc , Rba
50.08Rbc , b57Rbc , Db50, and a50.000 02Rbc . The
rest of the rates are zero. For these parameter settings
steady-state populations areraa50.279, rbb50.349, and
rcc50.372. Equations~21! and ~23! now give Bab /Bba
.13.5 andBac /Bca50 in the whole probe spectrum. In fac
as Rc j50 for all j there are no quantum jumps taking th
system out of stateuc&, which means that there are no two
photon gain processes, i.e., sinceGc50 then Bac50 @see
Eq. ~15!#. Figure 6~b! shows the individual contributions o
the different physical processes to the probe response. No
that the main process at and between the Rabi sideban
two-photon absorption, while at the wings of the Rabi sid

FIG. 5. Asymmetry between the generalized EinsteinB coeffi-
cients for one-photon (DB1p) and two-photon processes (DB2p) for
the h scheme withRab , Rba , Rba , RcbÞ0. The rest of theRi j are
taken as identically zero.
0-7
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J. MOMPART AND R. CORBALÁN PHYSICAL REVIEW A 63 063810
bands one-photon gain processes predominate even th
there is no one-photon inversion. In fact, the total probe
sponse plotted in Fig. 6~c! shows the possibility of inversion
less amplification at the wings of the Rabi sidebands. I
worth mentioning that inversionless amplification at the
additional sidebands has been previously predicted but
remains to be experimentally observed@10,23#.

2. Probing an electric dipole forbidden transition

For a probe field coupling a weak transition, e.g., an el
tric dipole forbidden transition, we can takeRab ,Rba'0 in
Eqs.~22! and then

~DB1p!h,V.
Rbc2Rcb

Rcb
, ~24a!

~DB2p!h,V.
Rcb2Rbc

Rbc1Rca
. ~24b!

As in the previous case, the sign of the asymmetry betw
one- and two-photon gain and loss processes is governe
the rate differenceRbc2Rcb that also controls the driving
field amplification or absorption.

Again for theh scheme, Fig. 7~a! shows the relative value
of the generalized EinsteinB coefficients as a function of th
probe detuning for the following parameter values:Rac
50.1Rbc , Rca50.12Rbc , Rcb50.12Rbc , b57Rbc , Db50,

FIG. 6. As in Fig. 4 for the following set of parameters:Rab

50.1Rbc , Rba50.08Rbc , b57Rbc , Db50, and a
50.000 02Rbc . The rest of theRi j are taken as identically zero.
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anda50.000 02Rbc . The steady-state populations read no
raa.0.378, rbb.0.308, andrcc.0.315, i.e., sinceRca
.Rac there is one-photon (raa.rbb) and two-photon (raa
.rcc) population inversion. The ratio between the Einste
B coefficients readsBab /Bba58.3 andBac /Bca50.21. No-
tice in Fig. 7~b! that two-photon absorption is the main pr
cess between the Rabi sidebands in spite of the fact that t
is two-photon population inversion. In fact, the total pro
response plotted in Fig. 7~c! shows absorption between th
Rabi sidebands. It is worth mentioning that this so-cal
population inversion without amplification or lasing based
two-photon absorption was proposed very recently as an
ternative method toQ switching in order to generate gian
pulses of laser light@24#. In fact, we see in Fig. 7~c! that
there is probe absorption atuDau&3Rbc in the presence of
population inversion at theua&→ub& transition. It is possible
to extract the energy from this inverted transition in the fo
of a laser pulse by switching off the drive field in the oth
transition@24#.

3. Driving an electric dipole forbidden transition

Let us consider now a drive field acting on a dipole fo
bidden transition. In this case, we can takeRbc ,Rcb'0 in
Eqs.~22! and therefore

~DB1p!h,V.
RacRba2RabRca

Rab~Rba1Rca!
, ~25a!

FIG. 7. As in Fig. 4 for the following set of parameters:Rac

50.1Rbc , Rca50.12Rbc , Rcb50.12Rbc , b57Rbc , Db50, and
a50.000 02Rbc . The rest of theRi j are taken as identically zero.
0-8
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GENERALIZED EINSTEINB COEFFICIENTS FOR . . . PHYSICAL REVIEW A 63 063810
~DB2p!h,V.
RabRca2RacRba

Rac~Rba1Rca!
. ~25b!

The rate differenceRacRba2RabRca now determines the
sign of the symmetry breakings. Moreover, one can incre
one-photon gain asymmetry (DB1p)h,V by taking, for in-
stance,Rab→0, or, alternatively, two-photon gain asymm
try (DB2p)h,V, for Rac→0. Note, however, that these rate
control also whether there is inversion or not in the prob
transition. In particular, from Eq.~20! for Rab1Rac,Rba
1Rca the probed transition is inverted.

For theh scheme, Fig. 8 shows the relative value of theB
coefficients for the following parameter settings:Rac
50.02Rab , Rca50.8Rab , b58Rab , Db50, and a
50.000 02Rab . For these values the steady-state populati
read raa.0.281, rbb.0.361, andrcc.0.358. Therefore,
there is neither one-photon nor two-photon population inv
sion. The ratio between the EinsteinB coefficients reads now
Bab /Bba50 and Bac /Bca551. One hasBab50 because
there are no dissipative processes taking the system o
stateub&. Notice in Fig. 8~b! that two-photon gain is the mai
process between the Rabi sidebands even though there
two-photon population inversion. In fact, the total probe
sponse plotted in Fig. 8~c! shows amplification without
population inversion between the Rabi sidebands. Note
this inversionless gain between the Rabi resonances du

FIG. 8. As in Fig. 4 for the following set of parameter
Rac50.02Rab , Rca50.8Rab , b58Rab , Db50, and a
50.000 02Rab . The rest of theRi j are taken as identically zero.
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two-photon gain has been observed experimentally very
cently in a V type system in laser cooled Rb atoms@25#.

B. p and L schemes

From Eqs.~14! and~15!, and using~9!, the ratio between
the generalized EinsteinB coefficients for one-photon pro
cesses reads now

Bab

Bba
5

P~a,b!

P~b,a!

rbb

raa
5

P~a!

P~b!

Gb

Ga

rbb

raa
, ~26!

and for two-photon processes

Bcb

Bbc
5

P~c,b!

P~b,c!

rbb

rcc
5

P~c!

P~b!

Gb

Gc

rbb

rcc
. ~27!

On the other hand, the steady-state populations read for t
schemes

rcc.raa , ~28a!

rbb.
Rab1Rab

Rba1Rbc
raa , ~28b!

which gives

~DB1p!p,L.
RbaRcb2RabRbc1~Rca2Rac!~Rba1Rbc!

~Rab1Rac!~Rba1Rbc!
,

~29a!

~DB2p!p,L.
RabRbc2RbaRcb1~Rac2Rca!~Rba1Rbc!

~Rca1Rcb!~Rba1Rbc!
.

~29b!

Again, the generalized EinsteinB coefficients satisfy
DB1pDB2p<0 with, in general,uDB1puÞuDB2pu. As was
done previously, we will analyze these expressions for
following three simpler cases.

1. Two-photon electric dipole forbidden transition

In this case we takeRbc ,Rcb'0 and thus

~DB1p!p,L.
Rca2Rac

Rab1Rac
, ~30a!

~DB2p!p,L.
Rac2Rca

Rca
. ~30b!

Again, the incoherent processes present in the driven tra
tion determine the sign of the one-photon and two-pho
asymmetries.

2. Probing an electric dipole forbidden transition

Taking Rab ,Rba'0 Eqs.~29! become

~DB1p!p,L.
Rca2Rac

Rac
, ~31a!
0-9
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~DB2p!p,L.
Rac2Rca

Rca1Rcb
. ~31b!

As in the previous case, the rate differenceRca2Rac deter-
mines the sign of the asymmetries.

3. Driving an electric dipole forbidden transition

Finally, in this case one hasRac ,Rca'0 and thus

~DB1p!p,L.
RbaRcb2RabRbc

Rab~Rba1Rbc!
, ~32a!

~DB2p!p,L.
RabRbc2RbaRcb

Rcb~Rba1Rbc!
. ~32b!

Now, the rate differenceRbaRcb2RabRbc determines the
sign of the one-photon and two-photon asymmetries. I
possible to enhance one-photon gain asymmetry by ta
Rab→0 or, alternatively, two-photon gain asymmetry by ta
ing Rcb→0.

V. CONCLUSIONS

We have analyzed closed three-level schemes driven
resonance on one transition by an intense TW laser fi
while probed at an adjacent transition by a weak TW la
field. We have made use of the quantum-jump formalism
identify and quantify the different physical processes resp
sible for probe amplification or absorption. By using th
technique, we have defined generalized EinsteinB coeffi-
cients for one- and two-photon gain and loss processes sh
ing that, in general, these generalizedB coefficients are dif-
ferent for stimulated emission and absorption both for o
photon processes and for two-photon processes. We
obtained simple analytical expressions for these asymme
between generalized Einstein coefficients for one- and t
photon processes in terms of the rates of the particular in
herent processes present in each scheme. Some general
erties of these generalized EinsteinB coefficients have been
found, e.g., a ‘‘positive’’ asymmetry between the coefficien
for one-photon processes always comes together wit
‘‘negative’’ asymmetry between the coefficients for tw
photon processes, and vice versa. All these analytical re
have been tested by a numerical calculation of the rela
value of these generalized EinsteinB coefficients. In addi-
tion, it has also been verified that the probe response g
by theseB coefficients completely agrees with that obtain
from a standard density-matrix analysis. Finally, some v
well known phenomena occurring in coherently driven thr
level systems, such as amplification without inversion or
version without amplification, have been discussed in te
of the asymmetries between these generalized EinsteinB co-
efficients.

An extension of the analysis presented in this pape
open or multilevel systems is straightforward provided t
the required conditions mentioned in the Introduction for
applicability of the quantum-jump technique are satisfi
However, it seems more difficult to obtain analytical expre
sions for the relative value of these generalized EinsteiB
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coefficients in the presence of a standing wave drive confi
ration. In this case, it is well known that the number of sy
tem states belonging to a given manifold is infinite@26#
which avoids the possibility of using the analytical tools r
viewed in Sec. II. Instead, it is possible to compute the re
tive value of theseB coefficients by performing a numerica
analysis of the corresponding quantum-trajectory realizati
or Monte Carlo simulations.
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APPENDIX A

In the limit b@( i(Rbi1Rci),Db and a!( iRai ,b, the
conditional probabilitiesQ( j / i ) to start a coherent evolution
period in stateu j & once the previous one started inu i & can be
easily obtained by a simple examination of Fig. 2 for theh
scheme and of the corresponding figures for other three-l
systems. For theh scheme~and also for the V scheme! and
due to the fact thata!( iRai whenever the system starts i
coherent evolution in stateua& there will almost always be a
quantum jump from this stateua& to other states before th
amplitude probability to be in stateub& or uc& becomes sig-
nificant. Then,

Q~a/a!h,V5Raa /~Raa1Rab1Rac!, ~A1a!

Q~b/a!h,V5Rab /~Raa1Rab1Rac!, ~A1b!

Q~c/a!h,V5Rac /~Raa1Rab1Rac!. ~A1c!

On the other hand, sinceb@( i(Rbi1Rci),Db , then when-
ever the system starts its coherent evolution in stateub& it
will evolve in a Rabi oscillatory fashion betweenub& anduc&
with, on average, half of the time in stateub& and half of the
time in stateuc&, before a quantum jump takes place. The
fore,

Q~a/b!h,V5
Rba1Rca

Rba1Rca1Rbb1Rcb1Rbc1Rcc
,

~A1d!

Q~b/b!h,V5
Rbb1Rcb

Rba1Rca1Rbb1Rcb1Rbc1Rcc
,

~A1e!

Q~c/b!h,V5
Rbc1Rcc

Rba1Rca1Rbb1Rcb1Rbc1Rcc
, ~A1f!

and exactly the same if the system starts its coherent ev
tion in uc&:

Q~a/c!h,V5
Rba1Rca

Rba1Rca1Rbb1Rcb1Rbc1Rcc
,

~A1g!
0-10
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Q~b/c!h,V5
Rbb1Rcb

Rba1Rca1Rbb1Rcb1Rbc1Rcc
,

~A1h!

Q~c/c!h,V5
Rbc1Rcc

Rba1Rca1Rbb1Rcb1Rbc1Rcc
. ~A1i!

Notice that Eqs.~A1d!–~A1i! remain valid even for a weak
driving field provided thatRb j50 for all j ~or, alternatively,
Rc j50 for all j ), since then the system cannot leave a
multiplicity j from state ub& ~or, alternatively, from state
uc&).

For the p and L schemes in the limitb@( i(Rai
1Rci),Db and a!( iRbi ,b, these conditional probabilitie
read

Q~a/b!p,L5Rba /~Rba1Rbb1Rbc!, ~A2a!

Q~b/b!p,L5Rbb /~Rba1Rbb1Rbc!, ~A2b!

Q~c/b!p,L5Rbc /~Rba1Rbb1Rbc!, ~A2c!

Q~a/a!p,L5Q~a/c!p,L5
Raa1Rca

Raa1Rca1Rab1Rcb1Rac1Rcc
,

~A2d!

Q~b/a!p,L5Q~b/c!p,L5
Rab1Rcb

Raa1Rca1Rab1Rcb1Rac1Rcc
,

~A2e!

Q~c/a!p,L5Q~c/c!p,L5
Rac1Rcc

Raa1Rca1Rab1Rcb1Rac1Rcc
.

~A2f!

In this case, Eqs.~A2d!–~A2f! are still valid for a weak
driving field provided thatRa j50 for all j or, alternatively,
Rc j50 for all j.

Finally, note that the conditional probabilities given
Eqs.~A1! and~A2! do not depend on the laser parametersb,
Db , a, and Da , and, consequently, neither will the prob
abilities P( i ) obtained from the recursive relationshipP( i )
5( j P( j )Q( i / j ) depend on these parameters.

APPENDIX B

The effective non-Hermitian Hamiltonians for the fo
three-level schemes under investigation are@7#

He f f
h 5\S 2~Da1Db!2 i

Ga

2
a/2 0

a/2 2Db2 i
Gb

2
b/2

0 b/2 2 i
Gc

2

D ,

~B1a!
06381
y

He f f
V 5\S 2Da2 i

Ga

2
a/2 0

a/2 2 i
Gb

2
b/2

0 b/2 2Db2 i
Gc

2

D ,

~B1b!

He f f
p 5\S 2Da2 i

Ga

2
a/2 b/2

a/2 2 i
Gb

2
0

b/2 0 2~Da1Db!2 i
Gc

2

D ,

~B1c!

and

He f f
L 5\S 2Db2 i

Ga

2
a/2 b/2

a/2 ~Da2Db!2 i
Gb

2
0

b/2 0 2 i
Gc

2

D .

~B1d!

APPENDIX C

For theh scheme, the time evolution of the complex am
plitude probabilitiesci j (t)5xi j (t)1 iy i j (t) is determined
by the Hamiltonian given in Eq.~B1a! and reads

ẋaa52
Ga

2
xaa2~Da1Db!yaa1

a

2
yab , ~C1a!

ẏaa52
Ga

2
yaa1~Da1Db!xaa2

a

2
xab , ~C1b!

ẋbb52
Gb

2
xbb2Dbybb1

a

2
yab1

b

2
ybc , ~C1c!

ẏbb52
Gb

2
ybb1Dbxbb2

a

2
xab2

b

2
xbc , ~C1d!

ẋcc52
Gc

2
xcc1

b

2
ybc , ~C1e!

ẏcc52
Gc

2
ycc2

b

2
xbc , ~C1f!

ẋab52
Gb

2
xab2Dbyab1

a

2
yaa1

b

2
yac , ~C1g!
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ẏab52
Gb

2
yab1Dbxab2

a

2
xaa2

b

2
xac , ~C1h!

ẋac52
Gc

2
xac1

b

2
yab , ~C1i!

ẏac52
Gc

2
yac2

b

2
xab , ~C1j!

ẋbc52
Gc

2
xbc1

b

2
ybb , ~C1k!
v.

.

pt

an

06381
ẏbc52
Gc

2
ybc2

b

2
xbb , ~C1l!

where we have made use of Eq.~9! and Ga5Raa1Rab
1Rac , Gb5Rba1Rbb1Rbc , and Gc5Rca1Rcb1Rcc . In
order to calculate theBi j coefficients given in Eq.~15! we
have integrated Eqs.~C1a!–~C1l! by using a Runge-Kutta-
Fehlberg routine of orders seventh to eighth and then divi
the result by the corresponding atomic population. Note th
due to the presence of dissipation,xi j (t),yi j (t)→0 in an
exponential way which, in fact, guarantees the converge
of *0

`uci j (t)u2dt.
v.

den
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