16 research outputs found

    Invalidation of Microsomal Prostaglandin E Synthase-1 (mPGES-1) Reduces Diet-Induced Low-Grade Inflammation and Adiposity

    Get PDF
    Chronic low-grade inflammation is known to be linked to obesity, and to occur in the early stages of the disease. This mechanism is complex and involves numerous organs, cells, and cytokines. In this context, inflammation of white adipose tissue seems to play a key role in the development of obesity. Because of its properties, prostaglandin E2 (PGE2), an emblematic inflammatory mediator, has been proposed as an actor linking inflammation and obesity. Indeed, PGE2 is involved in mechanisms that are dysregulated in obesity such as lipolysis and adipogenesis. Microsomal prostaglandin E synthase-1 (mPGES-1) is an enzyme, which specifically catalyzes the final step of PGE2 biosynthesis. Interestingly, mPGES-1 invalidation dramatically alters the production of PGE2 during inflammation. In the present work, we sought to determine whether mPGES-1 could contribute to inflammation associated with obesity. To this end, we analyzed the energy metabolism of mPGES-1 deficient mice (mPGES-1-/-) and littermate controls, fed with a high-fat diet. Our data showed that mPGES-1-/- mice exhibited resistance to diet-induced obesity when compared to wild-type littermates. mPGES-1-/- mice fed with a high-fat diet, showed a lower body weight gain and a reduced adiposity, which were accompanied by a decrease in adipose tissues inflammation. We also observed an increase in energy expenditures in mPGES-1-/- mice fed with a high-fat diet without any changes in activity and browning process. Altogether, these data suggest that mPGES-1 inhibition may prevent diet-induced obesity

    Leptin is required for hypothalamic regulation of miRNAs targeting POMC 3 â€Č UTR

    No full text
    International audienceThe central nervous system (CNS) monitors modifications in metabolic parameters or hormone levels and elicits adaptive responses such as food intake regulation. Particularly, within the hypothalamus, leptin modulates the activity of pro-opiomelanocortin (POMC) neurons which are critical regulators of energy balance. Consistent with a pivotal role of the melanocortin system in the control of energy homeostasis, disruption of the POMC gene causes hyperphagia and obesity. MicroRNAs (miRNAs) are short noncoding RNA molecules that post-transcriptionally repress the expression of genes by binding to 3 â€Č-untranslated regions (3 â€Č UTR) of the target mRNAs. However, little is known regarding the role of miRNAs that target POMC 3 â€Č UTR in the central control energy homeostasis. Particularly, their interaction with the leptin signaling pathway remain unclear. First, we used common prediction programs to search for potential miRNAs target sites on 3 â€Č UTR of POMC mRNA. This screening identified a set of conserved miRNAs seed sequences for mir-383, mir-384-3p, and mir-488. We observed that mir-383, mir-384-3p, and mir-488 are up-regulated in the hypothalamus of leptin deficient ob/ob mice. In accordance with these observations, we also showed that mir-383, mir-384-3p, and mir-488 were increased in db/db mice that exhibit a non-functional leptin receptor. The intraperitoneal injection of leptin down-regulated the expression of these miRNAs of interest in the hypothalamus of ob/ob mice showing the involvement of leptin in the expression of mir-383, mir-384-3p, and mir-488. Finally, the evaluation of responsivity to intracerebroventricular administration of leptin exhibited that a chronic treatment with leptin decreased mir-488 expression in hypothalamus of C57BL/6 mice. In summary, these results suggest that leptin modulates the expression of miRNAs that target POMC mRNA in hypothalamus

    miR-140-5p and miR-140-3p: Key Actors in Aging-Related Diseases?

    No full text
    International audiencemicroRNAs (miRNAs) are small single strand non-coding RNAs and powerful gene expression regulators. They mainly bind to the 3â€ČUTR sequence of targeted mRNA, leading to their degradation or translation inhibition. miR-140 gene encodes the pre-miR-140 that generates the two mature miRNAs miR-140-5p and miR-140-3p. miR-140-5p/-3p have been associated with the development and progression of cancers, but also non-neoplastic diseases. In aging-related diseases, miR-140-5p and miR-140-3p expressions are modulated. The seric levels of these two miRNAs are used as circulating biomarkers and may represent predictive tools. They are also considered key actors in the pathophysiology of aging-related diseases. miR-140-5p/-3p repress targets regulating cell proliferation, apoptosis, senescence, and inflammation. This work focuses on the roles of miR-140-3p and miR-140-5p in aging-related diseases, details their regulation (i.e., by long non-coding RNA), and reviews the molecular targets of theses miRNAs involved in aging pathophysiology

    GABA B receptors modulate Ca2+ but not G protein‐gated inwardly rectifying K+ channels in cerebrospinal‐fluid contacting neurones of mouse brainstem

    No full text
    International audienceMedullo-spinal CSF contacting neurones (CSF-cNs) located around the central canal are conserved in all vertebrates and suggested to be a novel sensory system intrinsic to the CNS. CSF-cNs receive GABAergic inhibitory synaptic inputs involving ionotropic GABAA receptors, but the contribution of metabotropic GABAB receptors (GABAB -Rs) has not yet been studied. Here, we indicate that CSF-cNs express functional GABAB -Rs that inhibit postsynaptic calcium channels but fail to activate inhibitory potassium channel of the Kir3-type. We further show that GABAB -Rs localise presynaptically on GABAergic and glutamatergic synaptic inputs contacting CSF-cNs, where they inhibit the release of GABA and glutamate. Our data are the first to address the function of GABAB -Rs in CSF-cNs and show that on the presynaptic side they exert a classical synaptic modulation whereas at the postsynaptic level they have an atypical action by modulating calcium signalling without inducing potassium-dependent inhibition

    the food contaminant deoxynivalenol provokes metabolic impairments resulting in non-alcoholic fatty liver (NAFL) in mice

    No full text
    International audienceThe ribotoxin deoxynivalenol (DON) is a trichothecene found on cereals responsible for mycotoxicosis in both humans and farm animals. DON toxicity is characterized by reduced food intake, diminished nutritional efficiency and immunologic effects. The present study was designed to further characterize the alterations in energy metabolism induced by DON intoxication. We demonstrated that acute DON intoxication triggered liver steatosis associated with an altered expression of genes related to lipids oxidation, lipogenesis and lipolysis. This steatosis was concomitant to anorexia, hypoglycemia and a paradoxical transient insulin release. DON treatment resulted also in stimulation of central autonomic network regulating sympathetic outflow and adrenaline and glucocorticoids secretion. Furthermore, an increased expression of genes linked to inflammation and reticulum endoplasmic stress was observed in the liver of DON-treated mice. Finally, we propose that lipids mobilization from adipose tissues (AT) induced by DON intoxication drives hepatic steatosis since (1) genes encoding lipolytic enzymes were up-regulated in AT and (2) plasma concentration of triglycerides (TGs) and non-esterified fatty acids were increased during DON intoxication. Altogether, these data demonstrate that DON induced hormonal and metabolic dysregulations associated with a spectrum of hepatic abnormalities, evocative of a non-alcoholic fatty liver disease

    A single polycystic kidney disease 2-like 1 channel opening acts as a spike generator in cerebrospinal fluid-contacting neurons of adult mouse brainstem.

    No full text
    International audienceCerebrospinal fluid contacting neurons (CSF-cNs) are found around the central canal of all vertebrates. They present a typical morphology, with a single dendrite that projects into the cavity and ends in the CSF with a protuberance. These anatomical features have led to the suggestion that CSF-cNs might have sensory functions, either by sensing CSF movement or composition, but the physiological mechanisms for any such role are unknown. This hypothesis was recently supported by the demonstration that in several vertebrate species medullo-spinal CSF-cNs selectively express Polycystic Kidney Disease 2-Like 1 proteins (PKD2L1). PKD2L1 are members of the 'transient receptor potential (TRP)' superfamily, form non-selective cationic channels of high conductance, are regulated by various stimuli including protons and are therefore suggested to act as sensory receptors. Using patch-clamp whole-cell recordings of CSF-cNs in brainstem slices obtained from wild type and mutant PKD2L1 mice, we demonstrate that spontaneously active unitary currents in CSF-cNs are due to PKD2L1 channels that are capable, with a single opening, of triggering action potentials. Thus PKD2L1 might contribute to the setting of CSF-cN spiking activity. We also reveal that CSF-cNs have the capacity of discriminating between alkalinization and acidification following activation of specific conductances (PKD2L1 vs. ASIC) generating specific responses. Altogether, this study reinforces the idea that CSF-cNs represent sensory neurons intrinsic to the central nervous system and suggests a role for PKD2L1 channels as spike generators.Copyright © 2015 Elsevier Ltd. All rights reserved

    The food born mycotoxin deoxynivalenol induces low-grade inflammation in mice in the absence of observed-adverse effects

    No full text
    International audienceScope: Deoxynivalenol (DON) is the most common fungi toxin contaminating cereals and cereal-derived products. High consumption of DON is implicated in mycotoxicoses and causes a set of symptoms including diarrhea, vomiting, reduced weight gain or immunologic effects. However, such clinical intoxications are rare in humans, who are most frequently, exposed to low DON doses without developing acute symptoms. The adverse effect of chronically consumed low DON doses can not be totally excluded. Using a mouse model, we evaluated the impact on inflammatory status of subchronic administration of DON given at doses comparable to the daily human consumption. Methods and results: The inflammatory status was evaluated in mice receiving 1, 2.5 or 25 mg/kg bw/day DON during a 10 or 30 days period. The systemic interleukin-1 beta (IL-1b) concentrations were evaluated by Elisa and inflammatory biomarker mRNA expressions were quantified by qPCR within brain structures and peripheral organs. While DON intake failed to modify physiological markers, we observed a systemic IL-1b increase and a modulation of pro-inflammatory gene expression in brain structures, liver, duodenum and adipose tissue. Conclusion: We bring here the first evidence that subchronic DON intake, at doses that match daily human intake, induces, in a murine model, a central and peripheral low grade inflammatio

    Modification of energy balance induced by the food contaminant T-2 toxin: A multimodal gut-to-brain connection

    No full text
    International audienceT-2 toxin is one of the most toxic Fusarium-derived trichothecenes found on cereals and constitutes a widespread contaminant of agricultural commodities as well as commercial foods. Low doses toxicity is characterized by reduced weight gain. To date, the mechanisms by which this mycotoxin profoundly modifies feeding behavior remain poorly understood and more broadly the effects of T-2 toxin on the central nervous system (CNS) have received limited attention. Through an extensive characterization of sickness-like behavior induced by T-2 toxin, we showed that its per os (p.o.) administration affects not only feeding behavior but also energy expenditure, glycaemia, body temperature and locomotor activity. Using c-Fos expression mapping, we identified the neuronal structures activated in response to T-2 toxin and observed that the pattern of neuronal populations activated by this toxin resembled that induced by inflammatory signals. Interestingly, part of neuronal pathways activated by the toxin were NUCB-2/nesfatin-1 expressing neurons. Unexpectedly, while T-2 toxin induced a strong peripheral inflammation, the brain exhibited limited inflammatory response at a time point when anorexia was ongoing. Unilateral vagotomy partly reduced T-2 toxin-induced brainstem neuronal activation. On the other hand, intracerebroventricular (icv) T-2 toxin injection resulted in a rapid (<1 h) reduction in food intake. Thus, we hypothesized that T-2 toxin could signal to the brain through neuronal and/or humoral pathways. The present work provides the first demonstration that T-2 toxin modifies feeding behavior by interfering with central neuronal networks devoted to central energy balance. Our results, with a particular attention to peripheral inflammation, strongly suggest that inflammatory mediators partake in the T- 2 toxin-induced anorexia and other symptoms. In view of the broad human and breeding animal exposure to T-2 toxin, this new mechanism may lead to reconsider the impact of the consumption of this toxin on human healt
    corecore