19 research outputs found

    Microparticles and Fibrinolysis

    No full text
    International audienceMicroparticles (MPs) are submicronic vesicles which are formed by budding of the cellular membrane of virtually any cell type in response to cell activation or apoptosis. Both circulating MPs and MPs generated within tissues harbor molecules with a large repertoire of biological activities and transfer material to target cells. Depending on their cellular origin, the stimuli triggering their formation, or their localization, they may participate in the maintenance of organ or vascular homeostasis as well as inducing dysfunction. MPs have mostly been described as having procoagulant properties. However, the fact that some MP subsets are able to efficiently generate plasmin suggests that the role of MPs in hemostasis is more complex than initially thought. In this review, we summarize key findings showing that MPs provide a heterogeneous catalytic surface for plasmin generation, according to their cellular origin. We further address the specific features of the MP-dependent fibrinolytic system. Potential consequences of this MP-associated fibrinolytic activity in pathology are illustrated in cancer

    A new hybrid immunocapture bioassay with improved reproducibility to measure tissue factor-dependent procoagulant activity of microvesicles from body fluids

    No full text
    International audienceBackground: The procoagulant activity of tissue factor-bearing microvesicles (MV-TF) has been associated with the risk of developing venous thrombosis in cancer patients. However, MV-TF assays are limited either by i) a lack of specificity, ii) a low sensitivity, or iii) a lack of repeatability when high-speed centrifugation (HS-C) is used to isolate MV. Therefore, our objective was to develop a new hybrid "capture-bioassay" with improved reproducibility combining MV immunocapture from biofluids and measurement of their TF activity.Materials and methods: Factor Xa generation and flow cytometry assays were used to evaluate IMS beads performance, and to select the most effective capture antibodies. The analytical performance between IMS-based and HS-C-based assays was evaluated with various models of plasma samples (from LPS-activated blood, spiked with tumoral MV, or with saliva MV) and different biofluids (buffer, plasma, saliva, and pleural fluid).Results: Combining both CD29 and CD59 antibodies on IMS beads was as efficient as HS-C to isolate plasmatic PS + MV. The IMS-based strategy gave significantly higher levels of MV-TF activity than HS-C in tumor MV spiked buffer, and both pleural fluids and saliva samples. Surprisingly, lower TF values were measured in plasma due to TFPI (TF pathway inhibitor) non-specifically adsorbed onto beads. This was overcome by adding a TFPI-blocking antibody. After optimization, the new IMS-based assay significantly improved reproducibility of MV-TF bioassay versus the HS-C-based assay without losing specificity and sensitivity. In addition, this approach could identify the cellular origin of MV-TF in various biological fluids.Conclusion: Compared to HS-C, the IMS-based measurement of MV-TF activity in body fluids improves reproducibility and makes the assay compatible with clinical practice. It can facilitate future automation

    Standardization of pre-analytical variables in plasma microparticle determination: results of the International Society on Thrombosis and Haemostasis SSC Collaborative workshop.

    No full text
    Microparticles (MP) are sub-micron sized vesicles released by activated or apoptotic cells. They are generally defined as 0.1 to 1 μm membrane particles that expose the anionic phospholipid phosphatidylserine (PS) and membrane antigens representative of their cellular origin [1]. It is now well recognized that MP behave as vectors of bioactive molecules, playing a role in blood coagulation, inflammation, cell activation and cancer metastasis. In clinical practice, circulating MP originating from blood and vascular cells are elevated in a variety of prothrombotic and inflammatory disorders, cardiovascular diseases, autoimmune conditions, infectious diseases and cancer [1-3

    Standardization of microparticle enumeration across different flow cytometry platforms: results of a multicenter collaborative workshop

    No full text
    International audienceEssentials The clinical enumeration of microparticles (MPs) is hampered by a lack of standardization. A new strategy to standardize MP counts by flow cytometry was evaluated in a multicenter study. No difference was found between instruments using forward or side scatter as the trigger parameter. This study demonstrated that beads can be used as a standardization tool for MPs. Click to hear the ISTH Academy's webinar on microvesicles SUMMARY: Background Microparticles (MPs) are extracellular vesicles resulting from the budding of cellular membranes that have a high potential as emergent biomarkers; however, their clinical relevance is hampered by methodological enumeration concerns and a lack of standardization. Flow cytometry (FCM) remains the most commonly used technique with the best capability to determine the cellular origin of single MPs. However, instruments behave variably depending on which scatter parameter (forward (FSC) or side scatter (SSC)) provides the best resolution to discriminate submicron particles. To overcome this problem, a new approach, based on two sets of selected beads adapted to FSC or SSC-optimized instruments, was recently proposed to reproducibly enumerate platelet-derived MP counts among instruments with different optical systems. Objective The objective was to evaluate this strategy in an international workshop that included 44 laboratories accounting for 52 cytometers of 14 types. Methods/Results Using resolution capability and background noise level as criteria to qualify the instruments, the standardization strategy proved to be compatible with 85% (44/52) of instruments. All instruments correctly ranked the platelet MP (PMP) levels of two platelet-free plasma samples. The inter-laboratory variability of PMP counts was 37% and 28% for each sample. No difference was found between instruments using forward or side-scattered light as the relative sizing parameter. Conclusions Despite remaining limitations, this study is the first to demonstrate a real potential of bead-based strategies for standardization of MP enumeration across different FCM platforms. Additional standardization efforts are still mandatory to evaluate MPs' clinical relevance at a multicenter level
    corecore