125 research outputs found

    Redox-regulated expression of glycolytic enzymes in resting and proliferating rat thymocytes

    Get PDF
    AbstractResting rat thymocytes partially degrade glucose aerobically to CO2 and H2O and produce reactive peroxide anions. In contrast proliferating cells, due to enhanced induction of glycolytic enzymes, degrade glucose almost completely to lactate thus minimizing the production of reactive oxygen species. In this paper we show that under conditions of oxidative stress the induction of the glycolytic enzymes in cultured rat thymocytes is markedly reduced. Furthermore, transfection assays with a rat hepatoma cell line and Drosophila Schneider cells revealed that reactive oxygen intermediates dramatically decrease the transcriptional activities of the Sp1-dependent aldolase A and pyruvate kinase M2 promoters leading to reduced reporter gene expression. These results indicate that cellular redox changes can regulate gene expression by reversible oxidative inactivation of Sp1 binding.© 1997 Federation of European Biochemical Societies

    Identification of the Amino Acids 300–600 of IRS-2 as 14-3-3 Binding Region with the Importance of IGF-1/Insulin-Regulated Phosphorylation of Ser-573

    Get PDF
    Phosphorylation of insulin receptor substrate (IRS)-2 on tyrosine residues is a key event in IGF-1/insulin signaling and leads to activation of the PI 3-kinase and the Ras/MAPK pathway. Furthermore, phosphorylated serine/threonine residues on IRS-2 can induce 14-3-3 binding. In this study we searched IRS-2 for novel phosphorylation sites and investigated the interaction between IRS-2 and 14-3-3. Mass spectrometry identified a total of 24 serine/threonine residues on IRS-2 with 12 sites unique for IRS-2 while the other residues are conserved in IRS-1 and IRS-2. IGF-1 stimulation led to increased binding of 14-3-3 to IRS-2 in transfected HEK293 cells and this binding was prevented by inhibition of the PI 3-kinase pathway and an Akt/PKB inhibitor. Insulin-stimulated interaction between endogenous IRS-2 and 14-3-3 was observed in rat hepatoma cells and in mice liver after an acute insulin stimulus and refeeding. Using different IRS-2 fragments enabled localization of the IGF-1-dependent 14-3-3 binding region spanning amino acids 300–600. The 24 identified residues on IRS-2 included several 14-3-3 binding candidates in the region 300–600. Single alanine mutants of these candidates led to the identification of serine 573 as 14-3-3 binding site. A phospho-site specific antibody was generated to further characterize serine 573. IGF-1-dependent phosphorylation of serine 573 was reduced by inhibition of PI 3-kinase and Akt/PKB. A negative role of this phosphorylation site was implicated by the alanine mutant of serine 573 which led to enhanced phosphorylation of Akt/PKB in an IGF-1 time course experiment. To conclude, our data suggest a physiologically relevant role for IGF-1/insulin-dependent 14-3-3 binding to IRS-2 involving serine 573

    Angiopoietin-like protein 4 is an exercise-induced hepatokine in humans, regulated by glucagon and cAMP

    Get PDF
    Objective: Angiopoietin-like protein-4 (ANGPTL4) is a circulating protein that is highly expressed in liver and implicated in regulation of plasma triglyceride levels. Systemic ANGPTL4 increases during prolonged fasting and is suggested to be secreted from skeletal muscle following exercise. Methods: We investigated the origin of exercise-induced ANGPTL4 in humans by measuring the arterial-to-venous difference over the leg and the hepato-splanchnic bed during an acute bout of exercise. Furthermore, the impact of the glucagon-to-insulin ratio on plasma ANGPTL4 was studied in healthy individuals. The regulation of ANGPTL4 was investigated in both hepatic and muscle cells. Results: The hepato-splanchnic bed, but not the leg, contributed to exercise-induced plasma ANGPTL4. Further studies using hormone infusions revealed that the glucagon-to-insulin ratio is an important regulator of plasma ANGPTL4 as elevated glucagon in the absence of elevated insulin increased plasma ANGPTL4 in resting subjects, whereas infusion of somatostatin during exercise blunted the increase of both glucagon and ANGPTL4. Moreover, activation of the cAMP/PKA signaling cascade let to an increase in ANGPTL4 mRNA levels in hepatic cells, which was prevented by inhibition of PKA. In humans, muscle ANGPTL4 mRNA increased during fasting, with only a marginal further induction by exercise. In human muscle cells, no inhibitory effect of AMPK activation could be demonstrated on ANGPTL4 expression. Conclusions: The data suggest that exercise-induced ANGPTL4 is secreted from the liver and driven by a glucagon-cAMP-PKA pathway in humans. These findings link the liver, insulin/glucagon, and lipid metabolism together, which could implicate a role of ANGPTL4 in metabolic diseases

    Insulin Sensitivity Is Reflected by Characteristic Metabolic Fingerprints - A Fourier Transform Mass Spectrometric Non-Targeted Metabolomics Approach

    Get PDF
    BACKGROUND: A decline in body insulin sensitivity in apparently healthy individuals indicates a high risk to develop type 2 diabetes. Investigating the metabolic fingerprints of individuals with different whole body insulin sensitivity according to the formula of Matsuda, et al. (ISI(Matsuda)) by a non-targeted metabolomics approach we aimed a) to figure out an unsuspicious and altered metabolic pattern, b) to estimate a threshold related to these changes based on the ISI, and c) to identify the metabolic pathways responsible for the discrimination of the two patterns. METHODOLOGY AND PRINCIPAL FINDINGS: By applying infusion ion cyclotron resonance Fourier transform mass spectrometry, we analyzed plasma of 46 non-diabetic subjects exhibiting high to low insulin sensitivities. The orthogonal partial least square model revealed a cluster of 28 individuals with alterations in their metabolic fingerprints associated with a decline in insulin sensitivity. This group could be separated from 18 subjects with an unsuspicious metabolite pattern. The orthogonal signal correction score scatter plot suggests a threshold of an ISI(Matsuda) of 15 for the discrimination of these two groups. Of note, a potential subgroup represented by eight individuals (ISI(Matsuda) value between 8.5 and 15) was identified in different models. This subgroup may indicate a metabolic transition state, since it is already located within the cluster of individuals with declined insulin sensitivity but the metabolic fingerprints still show some similarities with unaffected individuals (ISI >15). Moreover, the highest number of metabolite intensity differences between unsuspicious and altered metabolic fingerprints was detected in lipid metabolic pathways (arachidonic acid metabolism, metabolism of essential fatty acids and biosynthesis of unsaturated fatty acids), steroid hormone biosyntheses and bile acid metabolism, based on data evaluation using the metabolic annotation interface MassTRIX. CONCLUSIONS: Our results suggest that altered metabolite patterns that reflect changes in insulin sensitivity respectively the ISI(Matsuda) are dominated by lipid-related pathways. Furthermore, a metabolic transition state reflected by heterogeneous metabolite fingerprints may precede severe alterations of metabolism. Our findings offer future prospects for novel insights in the pathogenesis of the pre-diabetic phase

    Exercise and diabetes: relevance and causes for response variability

    Get PDF

    supplemental data and figure

    No full text
    Supplementary figure 1 and Supplementary Table S1</p
    • …
    corecore