272 research outputs found

    Development of Lumped Element Kinetic Inductance Detectors for the W-Band

    Full text link
    We are developing a Lumped Element Kinetic Inductance Detector (LEKID) array able to operate in the W-band (75-110 GHz) in order to perform ground-based Cosmic Microwave Background (CMB) and mm-wave astronomical observations. The W-band is close to optimal in terms of contamination of the CMB from Galactic synchrotron, free-free, and thermal interstellar dust. In this band, the atmosphere has very good transparency, allowing interesting ground-based observations with large (>30 m) telescopes, achieving high angular resolution (<0.4 arcmin). In this work we describe the startup measurements devoted to the optimization of a W-band camera/spectrometer prototype for large aperture telescopes like the 64 m SRT (Sardinia Radio Telescope). In the process of selecting the best superconducting film for the LEKID, we characterized a 40 nm thick Aluminum 2-pixel array. We measured the minimum frequency able to break CPs (i.e. hν=2Δ(Tc)=3.5kBTch\nu=2\Delta\left(T_{c}\right)=3.5k_{B}T_{c}) obtaining ν=95.5\nu=95.5 GHz, that corresponds to a critical temperature of 1.31 K. This is not suitable to cover the entire W-band. For an 80 nm layer the minimum frequency decreases to 93.2 GHz, which corresponds to a critical temperature of 1.28 K; this value is still suboptimal for W-band operation. Further increase of the Al film thickness results in bad performance of the detector. We have thus considered a Titanium-Aluminum bi-layer (10 nm thick Ti + 25 nm thick Al, already tested in other laboratories), for which we measured a critical temperature of 820 mK and a cut-on frequency of 65 GHz: so this solution allows operation in the entire W-band.Comment: 16th International Workshop on Low Temperature Detectors, Grenoble 20-24 July 2015, Journal of Low Temperature Physics, Accepte

    New application of superconductors: high sensitivity cryogenic light detectors

    Get PDF
    In this paper we describe the current status of the CALDER project, which is developing ultra-sensitive light detectors based on superconductors for cryogenic applications. When we apply an AC current to a superconductor, the Cooper pairs oscillate and acquire kinetic inductance, that can be measured by inserting the superconductor in a LC circuit with high merit factor. Interactions in the superconductor can break the Cooper pairs, causing sizable variations in the kinetic inductance and, thus, in the response of the LC circuit. The continuous monitoring of the amplitude and frequency modulation allows to reconstruct the incident energy with excellent sensitivity. This concept is at the basis of Kinetic Inductance Detectors (KIDs), that are characterized by natural aptitude to multiplexed read-out (several sensors can be tuned to different resonant frequencies and coupled to the same line), resolution of few eV, stable behavior over a wide temperature range, and ease in fabrication. We present the results obtained by the CALDER collaboration with 2x2 cm2 substrates sampled by 1 or 4 Aluminum KIDs. We show that the performances of the first prototypes are already competitive with those of other commonly used light detectors, and we discuss the strategies for a further improvement

    Characterization of the KID-Based Light Detectors of CALDER

    Full text link
    The aim of the Cryogenic wide-Area Light Detectors with Excellent Resolution (CALDER) project is the development of light detectors with active area of 5×55\times5 cm2^2 and noise energy resolution smaller than 20 eV RMS, implementing phonon-mediated kinetic inductance detectors. The detectors are developed to improve the background suppression in large-mass bolometric experiments such as CUORE, via the double read-out of the light and the heat released by particles interacting in the bolometers. In this work, we present the characterization of the first light detectors developed by CALDER. We describe the analysis tools to evaluate the resonator parameters (resonant frequency and quality factors) taking into account simultaneously all the resonance distortions introduced by the read-out chain (as the feed-line impedance and its mismatch) and by the power stored in the resonator itself. We detail the method for the selection of the optimal point for the detector operation (maximizing the signal-to-noise ratio). Finally, we present the response of the detector to optical pulses in the energy range of 0-30 keV

    Energy resolution and efficiency of phonon-mediated Kinetic Inductance Detectors for light detection

    Get PDF
    The development of sensitive cryogenic light detectors is of primary interest for bolometric experiments searching for rare events like dark matter interactions or neutrino-less double beta decay. Thanks to their good energy resolution and the natural multiplexed read-out, Kinetic Inductance Detectors (KIDs) are particularly suitable for this purpose. To efficiently couple KIDs-based light detectors to the large crystals used by the most advanced bolometric detectors, active surfaces of several cm2^2 are needed. For this reason, we are developing phonon-mediated detectors. In this paper we present the results obtained with a prototype consisting of four 40 nm thick aluminum resonators patterned on a 2×\times2 cm2^2 silicon chip, and calibrated with optical pulses and X-rays. The detector features a noise resolution σE=154±7\sigma_E=154\pm7 eV and an (18±\pm2)%\% efficiency.Comment: 5 pages, 5 figure

    Estimación de parámetros de flujo interno para el desarrollo de una tobera hidrodinámica

    Get PDF
    El desarrollo del saber cómo diseñar una tobera de gas de alta presión para el direccionado de una vehículo mediante un sistema de control automático resulta ser un objetivo complejo. Para lograr este propósito se propone, como primera etapa, el diseño y construcción de un banco de pruebas de tipo hidrodinámico como aproximación inicial, básica y realizable del proyecto. Este trabajo desarrolla una metodología para realizar las simulaciones del flujo de agua y estimar las fuerzas sobre la tobera a controlar. Las fuerzas obtenidas de la simulación se compararon con soluciones obtenidas por métodos clásicos de mecánica de fluidos; dónde se observa que los valores integrales son del orden esperado. En un futuro las simulaciones permitirán la resolución del problema completo con flujo compresible, acoplamiento fluido-estructura, sistema de control, etc.Publicado en: Mecánica Computacional vol. XXXV no.45Facultad de Ingenierí

    Kinetic Inductance Detectors for the OLIMPO experiment: design and pre-flight characterization

    Get PDF
    We designed, fabricated, and characterized four arrays of horn--coupled, lumped element kinetic inductance detectors (LEKIDs), optimized to work in the spectral bands of the balloon-borne OLIMPO experiment. OLIMPO is a 2.6 m aperture telescope, aimed at spectroscopic measurements of the Sunyaev-Zel'dovich (SZ) effect. OLIMPO will also validate the LEKID technology in a representative space environment. The corrected focal plane is filled with diffraction limited horn-coupled KID arrays, with 19, 37, 23, 41 active pixels respectively at 150, 250, 350, and 460\:GHz. Here we report on the full electrical and optical characterization performed on these detector arrays before the flight. In a dark laboratory cryostat, we measured the resonator electrical parameters, such as the quality factors and the electrical responsivities, at a base temperature of 300\:mK. The measured average resonator QQs are 1.7×104\times{10^4}, 7.0×104\times{10^4}, 1.0×104\times{10^4}, and 1.0×104\times{10^4} for the 150, 250, 350, and 460\:GHz arrays, respectively. The average electrical phase responsivities on resonance are 1.4\:rad/pW, 1.5\:rad/pW, 2.1\:rad/pW, and 2.1\:rad/pW; the electrical noise equivalent powers are 45aW/Hz\:\rm{aW/\sqrt{Hz}}, 160aW/Hz\:\rm{aW/\sqrt{Hz}}, 80aW/Hz\:\rm{aW/\sqrt{Hz}}, and 140aW/Hz\:\rm{aW/\sqrt{Hz}}, at 12 Hz. In the OLIMPO cryostat, we measured the optical properties, such as the noise equivalent temperatures (NET) and the spectral responses. The measured NETRJ_{\rm RJ}s are 200μKs200\:\mu\rm{K\sqrt{s}}, 240μKs240\:\mu\rm{K\sqrt{s}}, 240μKs240\:\mu\rm{K\sqrt{s}}, and 340μKs\:340\mu\rm{K\sqrt{s}}, at 12 Hz; under 78, 88, 92, and 90 mK Rayleigh-Jeans blackbody load changes respectively for the 150, 250, 350, and 460 GHz arrays. The spectral responses were characterized with the OLIMPO differential Fourier transform spectrometer (DFTS) up to THz frequencies, with a resolution of 1.8 GHz.Comment: Published on JCA

    CALDER - Neutrinoless double-beta decay identification in TeO2_2 bolometers with kinetic inductance detectors

    Get PDF
    Next-generation experiments searching for neutrinoless double-beta decay must be sensitive to a Majorana neutrino mass as low as 10 meV. CUORE, an array of 988 TeO2_2 bolometers being commissioned at Laboratori Nazionali del Gran Sasso in Italy, features an expected sensitivity of 50-130 meV at 90% C.L, that can be improved by removing the background from α\alpha radioactivity. This is possible if, in coincidence with the heat release in a bolometer, the Cherenkov light emitted by the β\beta signal is detected. The amount of light detected is so far limited to only 100 eV, requiring low-noise cryogenic light detectors. The CALDER project (Cryogenic wide-Area Light Detectors with Excellent Resolution) aims at developing a small prototype experiment consisting of TeO2_2 bolometers coupled to new light detectors based on kinetic inductance detectors. The R&D is focused on the light detectors that could be implemented in a next-generation neutrinoless double-beta decay experiment.Comment: 8 pages, 3 figures, added reference to first result

    Phonon-Mediated KIDs as Light Detectors for Rare-Event Search: The CALDER Project

    Get PDF
    Background suppression plays a crucial role in experiments searching for rare events, like neutrino-less double beta decay (0 ν\nu DBD) and dark matter. Large mass bolometers that are among the most competitive devices in this field would largely benefit from the development of ultrasensitive light detectors, as the combined readout of the bolometric and light signals enables the particle identification. The CALDER collaboration is developing cryogenic light detectors that will match the requirements of next generation experiments: noise lower than 20 eV RMS, large active area (several cm 2^{2} ), wide temperature range of operation, and ease in fabricating and operating a thousand of detectors. For this purpose, we are exploiting the excellent energy resolution and the natural multiplexed read-out provided by kinetic inductance detectors (KIDs). These devices can be operated in a phonon-mediated approach, in which KIDs are coupled to a large insulating substrate in order to increase the active surface from a few mm 2^{2} to 25 cm 2^{2} . Our current best prototype, based on aluminum LEKIDs, reached a baseline sensitivity of 80 eV with an overall efficiency of about 20 %

    CALDER - Neutrinoless double-beta decay identification in TeO2bolometers with kinetic inductance detectors

    Get PDF
    Next-generation experiments searching for neutrinoless double-beta decay must be sensitive to a Majorana neutrino mass as low as 10 meV. CUORE, an array of 988 TeO2 bolometers being commissioned at Laboratori Nazionali del Gran Sasso in Italy, features an expected sensitivity of 50-130 meV at 90% C.L, that can be improved by removing the background from α radioactivity. This is possible if, in coincidence with the heat release in a bolometer, the Cherenkov light emitted by the β signal is detected. The amount of light detected is so far limited to only 100 eV, requiring low-noise cryogenic light detectors. The CALDER project (Cryogenic wide-Area Light Detectors with Excellent Resolution) aims at developing a small prototype experiment consisting of TeO2 bolometers coupled to new light detectors based on kinetic inductance detectors. The present R&D is focused on the light detectors. We present the latest results and the perspectives of the project
    corecore