1,134 research outputs found

    Transition from Knudsen to molecular diffusion in activity of absorbing irregular interfaces

    Full text link
    We investigate through molecular dynamics the transition from Knudsen to molecular diffusion transport towards 2d absorbing interfaces with irregular geometry. Our results indicate that the length of the active zone decreases continuously with density from the Knudsen to the molecular diffusion regime. In the limit where molecular diffusion dominates, we find that this length approaches a constant value of the order of the system size, in agreement with theoretical predictions for Laplacian transport in irregular geometries. Finally, we show that all these features can be qualitatively described in terms of a simple random-walk model of the diffusion process.Comment: 4 pages, 4 figure

    On the impact of video stalling and video quality in the case of camera switching during adaptive streaming of sports content

    Get PDF
    The widespread usage of second screens, in combination with mobile video streaming technologies like HTTP Adaptive Streaming (HAS), enable new means for taking end-users' Quality of Experience (QoE) to the next level. For sports events, these technological evolutions can, for example, enhance the overall engagement of remote fans or give them more control over the content. In this paper, we consider the case of adaptively streaming multi-camera sports content to tablet devices, enabling the end-user to dynamically switch cameras. Our goal is to subjectively evaluate the trade-off between video stalling duration (as a result of requesting another camera feed) and initial video quality of the new feed. Our results show that short video stallings do not significantly influence overall quality ratings, that quality perception is highly influenced by the video quality at the moment of camera switching and that large quality fluctuations should be avoided

    In Vivo Biotinylation of the Toxoplasma Parasitophorous Vacuole Reveals Novel Dense Granule Proteins Important for Parasite Growth and Pathogenesis.

    Get PDF
    UnlabelledToxoplasma gondii is an obligate intracellular parasite that invades host cells and replicates within a unique parasitophorous vacuole. To maintain this intracellular niche, the parasite secretes an array of dense granule proteins (GRAs) into the nascent parasitophorous vacuole. These GRAs are believed to play key roles in vacuolar remodeling, nutrient uptake, and immune evasion while the parasite is replicating within the host cell. Despite the central role of GRAs in the Toxoplasma life cycle, only a subset of these proteins have been identified, and many of their roles have not been fully elucidated. In this report, we utilize the promiscuous biotin ligase BirA* to biotinylate GRA proteins secreted into the vacuole and then identify those proteins by affinity purification and mass spectrometry. Using GRA-BirA* fusion proteins as bait, we have identified a large number of known and candidate GRAs and verified localization of 13 novel GRA proteins by endogenous gene tagging. We proceeded to functionally characterize three related GRAs from this group (GRA38, GRA39, and GRA40) by gene knockout. While Δgra38 and Δgra40 parasites showed no altered phenotype, disruption of GRA39 results in slow-growing parasites that contain striking lipid deposits in the parasitophorous vacuole, suggesting a role in lipid regulation that is important for parasite growth. In addition, parasites lacking GRA39 showed dramatically reduced virulence and a lower tissue cyst burden in vivo Together, the findings from this work reveal a partial vacuolar proteome of T. gondii and identify a novel GRA that plays a key role in parasite replication and pathogenesis.ImportanceMost intracellular pathogens reside inside a membrane-bound vacuole within their host cell that is extensively modified by the pathogen to optimize intracellular growth and avoid host defenses. In Toxoplasma, this vacuole is modified by a host of secretory GRA proteins, many of which remain unidentified. Here we demonstrate that in vivo biotinylation of proximal and interacting proteins using the promiscuous biotin ligase BirA* is a powerful approach to rapidly identify vacuolar GRA proteins. We further demonstrate that one factor identified by this approach, GRA39, plays an important role in the ability of the parasite to replicate within its host cell and cause disease

    Influence of catalyst pore network structure on the hysteresis of multiphase reactions

    Get PDF
    The effects of the catalyst pore network structure on multiphase reactions in catalyst pellets are investigated by using the experimentally validated pore network model proposed in our recent work (AIChE J, 62, 451, 2016). The simulations display hysteresis loops of the effectiveness factor. The hysteresis loop area becomes significantly larger, when having small volume-averaged pore radius, wide pore-size distribution, and low pore connectivity; however, the loop area is insensitive to pellet size, even though it affects the value of the effectiveness factor. The hysteresis loop area is also strongly affected by the spatial distribution of the pore size, in particular for a bimodal pore-size distribution. The pore network structure directly influences mass transfer, capillary condensation, and pore blocking, and subsequently passes these influences on to the hysteresis loop of the effectiveness factor. Recognizing these effects is essential when designing porous catalysts for multiphase reaction processes. © 2016 American Institute of Chemical Engineers AIChE J, 63: 78–86, 2017

    State attachment variability across distressing situations in middle childhood

    Get PDF
    Contemporary research suggests that attachment has both a trait-like, stable component, and a state-like component that varies across contexts. In the current study, we assessed state attachment variability across comparably distressing situations in middle childhood. In two samples, children reported their expectations of maternal support in each situation. Additionally, we administered trait attachment and psychological well-being measures. Results indicated that, overall, children varied in their expectations across situations: more than half of the variance was explained by intra-individual differences across situations. Results revealed two components underlying variability: a Signal-and-Support component reflecting expectations of support-seeking and receiving, and a Back-on-Track component reflecting expectations of stress reduction and comfort. State attachment variability was related to individual differences in trait attachment: children who are more securely attached at the trait level, overall appear to vary less in their state attachment, likely due to their high mean state attachment scores across situations. When the mean state attachment scores are accounted for, more securely attached children seem to vary more, suggesting that their state attachment expectations are more sensitive to contextual fluctuations. Importantly, degree of state attachment variability explained psychological well-being over and above trait attachment

    μ-1,2-Bis(diethyl­phosphino)ethane-κ2 P:P′-bis­{[1,2-bis­(diethyl­phosphino)ethane-κ2 P,P′]trichloridonitrosyl­tungsten(II)}

    Get PDF
    The title binuclear compound, [W2Cl6(NO)2(C10H22P2)3], contains two W atoms which are bridged by a bis­(diethyl­phosphino)­ethane (depe) ligand. The seven-coord­inated tungsten(II) centres display distorted penta­gonal–bipyramidal geometries with trans nitrosyl and chloride ligands. The title mol­ecule lies on a crystallographic inversion centre. The ethane group of the non-bridging depe ligand is positionally disordered, with site-occupancy factors of 0.63 and 0.37. In the crystal structure, the binuclear mol­ecules are linked by weak inter­molecular C—H⋯O and C—H⋯Cl inter­actions. In addition, weak intra­molecular C—H⋯Cl inter­actions are also present

    Remodeling of the malaria parasite and host human red cell by vesicle amplification that induces artemisinin resistance

    Get PDF
    Artemisinin resistance threatens worldwide malaria control and elimination. Elevation of phosphatidylinositol-3-phosphate (PI3P) can induce resistance in blood stages of Plasmodium falciparum The parasite unfolded protein response (UPR) has also been implicated as a proteostatic mechanism that may diminish artemisinin-induced toxic proteopathy. How PI3P acts and its connection to the UPR remain unknown, although both are conferred by mutation in P falciparum Kelch13 (K13), the marker of artemisinin resistance. Here we used cryoimmunoelectron microscopy to show that K13 concentrates at PI3P tubules/vesicles of the parasite's endoplasmic reticulum (ER) in infected red cells. K13 colocalizes and copurifies with the major virulence adhesin PfEMP1. The PfEMP1-K13 proteome is comprehensively enriched in multiple proteostasis systems of protein export, quality control, and folding in the ER and cytoplasm and UPR. Synthetic elevation of PI3P that induces resistance in absence of K13 mutation also yields signatures of proteostasis and clinical resistance. These findings imply a key role for PI3P-vesicle amplification as a mechanism of resistance of infected red cells. As validation, the major resistance mutation K13C580Y quantitatively increased PI3P tubules/vesicles, exporting them throughout the parasite and the red cell. Chemical inhibitors and fluorescence microscopy showed that alterations in PfEMP1 export to the red cell and cytoadherence of infected cells to a host endothelial receptor are features of multiple K13 mutants. Together these data suggest that amplified PI3P vesicles disseminate widespread proteostatic capacity that may neutralize artemisinins toxic proteopathy and implicate a role for the host red cell in artemisinin resistance. The mechanistic insights generated will have an impact on malaria drug development

    Time-resolved single-crystal X-ray crystallography

    Get PDF
    In this chapter the development of time-resolved crystallography is traced from its beginnings more than 30 years ago. The importance of being able to “watch” chemical processes as they occur rather than just being limited to three-dimensional pictures of the reactant and final product is emphasised, and time-resolved crystallography provides the opportunity to bring the dimension of time into the crystallographic experiment. The technique has evolved in time with developments in technology: synchrotron radiation, cryoscopic techniques, tuneable lasers, increased computing power and vastly improved X-ray detectors. The shorter the lifetime of the species being studied, the more complex is the experiment. The chapter focusses on the results of solid-state reactions that are activated by light, since this process does not require the addition of a reagent to the crystalline material and the single-crystalline nature of the solid may be preserved. Because of this photoactivation, time-resolved crystallography is often described as “photocrystallography”. The initial photocrystallographic studies were carried out on molecular complexes that either underwent irreversible photoactivated processes where the conversion took hours or days. Structural snapshots were taken during the process. Materials that achieved a metastable state under photoactivation and the excited (metastable) state had a long enough lifetime for the data from the crystal to be collected and the structure solved. For systems with shorter lifetimes, the first time-resolved results were obtained for macromolecular structures, where pulsed lasers were used to pump up the short lifetime excited state species and their structures were probed by using synchronised X-ray pulses from a high-intensity source. Developments in molecular crystallography soon followed, initially with monochromatic X-ray radiation, and pump-probe techniques were used to establish the structures of photoactivated molecules with lifetimes in the micro- to millisecond range. For molecules with even shorter lifetimes in the sub-microsecond range, Laue diffraction methods (rather than using monochromatic radiation) were employed to speed up the data collections and reduce crystal damage. Future developments in time-resolved crystallography are likely to involve the use of XFELs to complete “single-shot” time-resolved diffraction studies that are already proving successful in the macromolecular crystallographic field.</p

    Pore network modeling of catalyst deactivation by coking, from single site to particle, during propane dehydrogenation

    Get PDF
    A versatile pore network model is used to study deactivation by coking in a single catalyst particle. This approach allows to gain detailed insights into the progression of deactivation from active site, to pore, and to particle – providing valuable information for catalyst design. The model is applied to investigate deactivation by coking during propane dehydrogenation in a Pt‐Sn/Al2O3 catalyst particle. We find that the deactivation process can be separated into two stages when there exist severe diffusion limitation and pore blockage, and the toxicity of coke formed in the later stage is much stronger than of coke formed in the early stage. The reaction temperature and composition change the coking rate and apparent reaction rate, informed by the kinetics, but, remarkably, they do not change the capacity for a catalyst particle to accommodate coke. On the other hand, the pore network structure significantly affects the capacity to contain coke
    corecore