543 research outputs found

    Holographic Thermalization

    Full text link
    Using the AdS/CFT correspondence, we probe the scale-dependence of thermalization in strongly coupled field theories following a quench, via calculations of two-point functions, Wilson loops and entanglement entropy in d=2,3,4. In the saddlepoint approximation these probes are computed in AdS space in terms of invariant geometric objects - geodesics, minimal surfaces and minimal volumes. Our calculations for two-dimensional field theories are analytical. In our strongly coupled setting, all probes in all dimensions share certain universal features in their thermalization: (1) a slight delay in the onset of thermalization, (2) an apparent non-analyticity at the endpoint of thermalization, (3) top-down thermalization where the UV thermalizes first. For homogeneous initial conditions the entanglement entropy thermalizes slowest, and sets a timescale for equilibration that saturates a causality bound over the range of scales studied. The growth rate of entanglement entropy density is nearly volume-independent for small volumes, but slows for larger volumes.Comment: 39 pages, 24 figure

    Shaping electron wave functions in a carbon nanotube with a parallel magnetic field

    Get PDF
    A magnetic field, through its vector potential, usually causes measurable changes in the electron wave function only in the direction transverse to the field. Here we demonstrate experimentally and theoretically that in carbon nanotube quantum dots, combining cylindrical topology and bipartite hexagonal lattice, a magnetic field along the nanotube axis impacts also the longitudinal profile of the electronic states. With the high (up to 17T) magnetic fields in our experiment the wave functions can be tuned all the way from "half-wave resonator" shape, with nodes at both ends, to "quarter-wave resonator" shape, with an antinode at one end. This in turn causes a distinct dependence of the conductance on the magnetic field. Our results demonstrate a new strategy for the control of wave functions using magnetic fields in quantum systems with nontrivial lattice and topology.Comment: 5 figure

    Pathway Signature and Cellular Differentiation in Clear Cell Renal Cell Carcinoma

    Get PDF
    BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is the most common kidney cancer. The purpose of this study is to define a biological pathway signature and a cellular differentiation program in ccRCC. METHODOLOGY: We performed gene expression profiling of early-stage ccRCC and patient-matched normal renal tissue using Affymetrix HG-U133a and HG-U133b GeneChips combined with a comprehensive bioinformatic analyses, including pathway analysis. The results were validated by real time PCR and IHC on two independent sample sets. Cellular differentiation experiments were performed on ccRCC cell lines and their matched normal renal epithelial cells, in differentiation media, to determine their mesenchymal differentiation potential. PRINCIPAL FINDINGS: We identified a unique pathway signature with three major biological alterations-loss of normal renal function, down-regulated metabolism, and immune activation-which revealed an adipogenic gene expression signature linked to the hallmark lipid-laden clear cell morphology of ccRCC. Culturing normal renal and ccRCC cells in differentiation media showed that only ccRCC cells were induced to undergo adipogenic and, surprisingly, osteogenic differentiation. A gene expression signature consistent with epithelial mesenchymal transition (EMT) was identified for ccRCC. We revealed significant down-regulation of four developmental transcription factors (GATA3, TFCP2L1, TFAP2B, DMRT2) that are important for normal renal development. CONCLUSIONS: ccRCC is characterized by a lack of epithelial differentiation, mesenchymal/adipogenic transdifferentiation, and pluripotent mesenchymal stem cell-like differentiation capacity in vitro. We suggest that down-regulation of developmental transcription factors may mediate the aberrant differentiation in ccRCC. We propose a model in which normal renal epithelial cells undergo dedifferentiation, EMT, and adipogenic transdifferentiation, resulting in ccRCC. Because ccRCC cells grown in adipogenic media regain the characteristic ccRCC phenotype, we have identified a new in vitro ccRCC cell model more resembling ccRCC tumor morphology

    On the Riemann Tensor in Double Field Theory

    Get PDF
    Double field theory provides T-duality covariant generalized tensors that are natural extensions of the scalar and Ricci curvatures of Riemannian geometry. We search for a similar extension of the Riemann curvature tensor by developing a geometry based on the generalized metric and the dilaton. We find a duality covariant Riemann tensor whose contractions give the Ricci and scalar curvatures, but that is not fully determined in terms of the physical fields. This suggests that \alpha' corrections to the effective action require \alpha' corrections to T-duality transformations and/or generalized diffeomorphisms. Further evidence to this effect is found by an additional computation that shows that there is no T-duality invariant four-derivative object built from the generalized metric and the dilaton that reduces to the square of the Riemann tensor.Comment: 36 pages, v2: minor changes, ref. added, v3: appendix on frame formalism added, version to appear in JHE

    Ramond-Ramond Cohomology and O(D,D) T-duality

    Full text link
    In the name of supersymmetric double field theory, superstring effective actions can be reformulated into simple forms. They feature a pair of vielbeins corresponding to the same spacetime metric, and hence enjoy double local Lorentz symmetries. In a manifestly covariant manner --with regard to O(D,D) T-duality, diffeomorphism, B-field gauge symmetry and the pair of local Lorentz symmetries-- we incorporate R-R potentials into double field theory. We take them as a single object which is in a bi-fundamental spinorial representation of the double Lorentz groups. We identify cohomological structure relevant to the field strength. A priori, the R-R sector as well as all the fermions are O(D,D) singlet. Yet, gauge fixing the two vielbeins equal to each other modifies the O(D,D) transformation rule to call for a compensating local Lorentz rotation, such that the R-R potential may turn into an O(D,D) spinor and T-duality can flip the chirality exchanging type IIA and IIB supergravities.Comment: 1+37 pages, no figure; Structure reorganized, References added, To appear in JHEP. cf. Gong Show of Strings 2012 (http://wwwth.mpp.mpg.de/members/strings/strings2012/strings_files/program/Talks/Thursday/Gongshow/Lee.pdf

    A Double Sigma Model for Double Field Theory

    Full text link
    We define a sigma model with doubled target space and calculate its background field equations. These coincide with generalised metric equation of motion of double field theory, thus the double field theory is the effective field theory for the sigma model.Comment: 26 pages, v1: 37 pages, v2: references added, v3: updated to match published version - background and detail of calculations substantially condensed, motivation expanded, refs added, results unchange

    The relationship between the perception of distributed leadership in secondary schools and teachers' and teacher leaders' job satisfaction and organizational commitment

    Get PDF
    This study investigates the relation between distributed leadership, the cohesion of the leadership team, participative decision-making, context variables, and the organizational commitment and job satisfaction of teachers and teacher leaders. A questionnaire was administered to teachers and teacher leaders (n=1770) from 46 large secondary schools. Multiple regression analyses and path analyses revealed that the study variables explained significant variance in organizational commitment. The degree of explained variance for job satisfaction was considerably lower compared to organizational commitment. Most striking was that the cohesion of the leadership team and the amount of leadership support was strongly related to organizational commitment, and indirectly to job satisfaction. Decentralization of leadership functions was weakly related to organizational commitment and job satisfaction

    Dynamic response of an Arctic epishelf lake to seasonal and long-term forcing: implications for ice shelf thickness

    Get PDF
    Changes in the depth of the freshwater–seawater interface in epishelf lakes have been used to infer long-term changes in the minimum thickness of ice shelves; however, little is known about the dynamics of epishelf lakes and what other factors may influence their depth. Continuous observations collected between 2011 and 2014 in the Milne Fiord epishelf lake, in the Canadian Arctic, showed that the depth of the halocline varied seasonally by up to 3.3 m, which was comparable to interannual variability. The seasonal depth variation was controlled by the magnitude of surface meltwater inflow and the hydraulics of the inferred outflow pathway, a narrow basal channel in the Milne Ice Shelf. When seasonal variation and an episodic mixing of the halocline were accounted for, long-term records of depth indicated there was no significant change in thickness of ice along the basal channel from 1983 to 2004, followed by a period of steady thinning at 0.50 m a−1 between 2004 and 2011. Rapid thinning at 1.15 m a−1 then occurred from 2011 to 2014, corresponding to a period of warming regional air temperatures. Continued warming is expected to lead to the breakup of the ice shelf and the imminent loss of the last known epishelf lake in the Arctic

    Dopamine and semantic activation: An investigation of masked direct and indirect priming

    Get PDF
    To investigate the effects of dopamine on the dynamics of semantic activation, 39 healthy volunteers were randomly assigned to ingest either a placebo (n = 24) or a levodopa (it = 16) capsule. Participants then performed a lexical decision task that implemented a masked priming paradigm. Direct and indirect semantic priming was measured across stimulus onset asynchronies (SOAs) of 250, 500 and 1200 ms. The results revealed significant direct and indirect semantic priming effects for the placebo group at SOAs of 250 ms and 500 ms, but no significant direct or indirect priming effects at the 1200 ms SOA. In contrast, the levodopa group showed significant direct and indirect semantic priming effects at the 250 ms SOA, while no significant direct or indirect priming effects were evident at the SOAs of 500 ins or 1200 ms. These results suggest that dopamine has a role in modulating both automatic and attentional aspects of semantic activation according to a specific time course. The implications of these results for current theories of dopaminergic modulation of semantic activation are discussed
    corecore