72 research outputs found

    Density correlations in ultracold atomic Fermi gases

    Get PDF
    We investigate density fluctuations in a coherent ensemble of interacting fermionic atoms. Adapting the concept of full counting statistics, well-known from quantum optics and mesoscopic electron transport, we study second-order as well as higher-order correlators of density fluctuations. Using the mean-field BCS state to describe the whole interval between the BCS limit and the BEC limit, we obtain an exact expression for the cumulant-generating function of the density fluctuations of an atomic cloud. In the two-dimensional case, we obtain a closed analytical expression. Poissonian fluctuations of a molecular condensate on the BEC side are strongly suppressed on the BCS side. The size of the fluctuations in the BCS limit is a direct measure of the pairing potential. We also discuss the BEC-BCS crossover of the third cumulant and the temperature dependence of the second cumulant.Comment: 4 pages, 4 figures. To appear in Phys. Rev. A. New calculation of the bin statistics of a free Bose gas; updated and extended bibliograph

    Retroviral insertions in Evi12, a novel common virus integration site upstream of Tra1/Grp94, frequently coincide with insertions in the gene encoding the peripheral cannabinoid receptor Cnr2

    Get PDF
    The common virus integration site (VIS) Evi11 was recently identified within the gene encoding the hematopoietic G-protein-coupled peripheral cannabinoid receptor Cnr2 (also refer

    Efficient identification of candidate tumor suppressor genes using retroviral insertional mutagenesis in mice with genomic instability

    Get PDF
    Division of Functional Genomic

    Homologs of genes and anonymous loci on human Chromosome 13 map to mouse Chromosomes 8 and 14

    Full text link
    To enhance the comparative map for human Chromosome (Chr) 13, we identified clones for human genes and anonymous loci that cross-hybridized with their mouse homologs and then used linkage crosses for mapping. Of the clones for four genes and twelve anonymous loci tested, cross-hybridization was found for six, COL4A1, COL4A2, D13S26, D13S35, F10, and PCCA. Strong evidence for homology was found for COL4A1, COL4A2, D13S26, D13S35, and F10, but only circumstantial homology evidence was obtained for PCCA. To genetically map these mouse homologs ( Cf10, Col4a1, Col4a2, D14H13S26, D8H13S35 , and Pcca-rs ), we used interspecific and intersubspecific mapping panels. D14H13S26 and Pcca-rs were located on the distal portion of mouse Chr 14 extending by ∼30 cM the conserved linkage between human Chr 13 and mouse Chr 14, assuming that Pcca-rs is the mouse homolog of PCCA. By contrast, Cf10, Col4a1, Col4a2 , and D8H13S35 mapped near the centromere of mouse Chr 8, defining a new conserved linkage. Finally, we identified either a closely linked sequence related to Col4a2 , or a recombination hot-spot between Col4a1 and Col4a2 that has been conserved in humans and mice.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47022/1/335_2004_Article_BF00352413.pd

    Mouse Chromosome 3

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46995/1/335_2004_Article_BF00648421.pd

    Four novel members of the connexin family of gap junction proteins. Molecular cloning, expression, and chromosome mapping.

    No full text
    We have used low stringency hybridization and polymerase chain reaction (PCR) amplification with degenerate oligonucleotides to identify four new members of the rat connexin gene family. On the basis of their predicted molecular mass, these proteins have been designated connexin (Cx) 40 (Cx40), Cx37, Cx33, and Cx31.1. The new connexins exhibit all of the conserved structural features of the connexin family, including highly similar extracellular and transmembrane domains but divergent major cytoplasmic domains. On the basis of primary sequence similarity, the connexin family may be divided into two classes. Cx40, Cx37, and Cx33 are similar to the previously characterized Cx43 and Cx46. Cx31.1 is similar to Cx26, Cx31, and Cx32. Cx37 and Cx40 mRNAs are expressed in a wide variety of adult organs and tissues, with particular abundance in lung. However, their relative levels are different in many organs and thus their distribution is not completely coincident. Cx33 and Cx31.1 genes exhibit a much more restricted pattern of expression; mRNAs are detected only in testes and skin, respectively. Chromosomal mapping studies indicate that Cx26 and Cx46 are tightly linked on chromosome 14, and Cx37 and Cx31.1 are linked on chromosome 4, while the rest of the connexin genes are dispersed
    corecore