1,984 research outputs found
The supercharge and superconformal symmetry for N=1 supersymmetric quantum mechanics
The superspace Lagrangian formulation of N=1 supersymmetric quantum mechanics
is presented. The general Lagrangian constructed out of chiral and antichiral
supercoordinates containing up to two derivatives and with a canonically
normalized kinetic energy term describes the motion of a nonrelativistic spin
1/2 particle with Land\'e g-factor 2 moving in two spatial dimensions under the
influence of a static but spatially dependent magnetic field. Noether's theorem
is derived for the general case and is used to construct superspace dependent
charges whose lowest components give the superconformal generators. The
supercoordinate of charges containing an R symmetry charge, the supersymmetry
charges and the Hamiltonian are combined to form a supercharge supercoordinate.
Superconformal Ward identities for the quantum effective action are derived
from the conservation equations and the source of potential symmetry breaking
terms are identified.Comment: 59 pages, LaTe
Non-Fermi liquid regime of a doped Mott insulator
We study the doping of a Mott insulator in the presence of quenched
frustrating disorder in the magnetic exchange. A low doping regime
is found, in which the quasiparticle coherent scale is low : with (the ratio of typical exchange to
hopping). In the ``quantum critical regime'' , several
physical quantities display Marginal Fermi Liquid behaviour : NMR relaxation
time , resistivity , optical lifetime
\tau_{opt}^{-1}\propto \omega/\ln(\omega/\epstar) and response functions obey
scaling, e.g. .
In contrast, single-electron properties display stronger deviations from Fermi
liquid theory in this regime with a dependence of the inverse
single-particle lifetime and a decay of the photoemission
intensity. On the basis of this model and of various experimental evidence, it
is argued that the proximity of a quantum critical point separating a glassy
Mott-Anderson insulator from a metallic ground-state is an important ingredient
in the physics of the normal state of cuprate superconductors (particularly the
Zn-doped materials). In this picture the corresponding quantum critical regime
is a ``slushy'' state of spins and holes with slow spin and charge dynamics
responsible for the anomalous properties of the normal state.Comment: 40 pages, RevTeX, including 13 figures in EPS. v2 : minor changes,
some references adde
The self-consistent bounce: an improved nucleation rate
We generalize the standard computation of homogeneous nucleation theory at
zero temperature to a scenario in which the bubble shape is determined
self-consistently with its quantum fluctuations. Studying two scalar models in
1+1 dimensions, we find the self-consistent bounce by employing a two-particle
irreducible (2PI) effective action in imaginary time at the level of the
Hartree approximation. We thus obtain an effective single bounce action which
determines the rate exponent. We use collective coordinates to account for the
translational invariance and the growth instability of the bubble and finally
present a new nucleation rate prefactor. We compare the results with those
obtained using the standard 1-loop approximation and show that the
self-consistent rate can differ by several orders of magnitude.Comment: 28 pages, revtex, 7 eps figure
Self-adapting method for the localization of quantum critical points using Quantum Monte Carlo techniques
A generalization to the quantum case of a recently introduced algorithm (Y.
Tomita and Y. Okabe, Phys. Rev. Lett. {\bf 86}, 572 (2001)) for the
determination of the critical temperature of classical spin models is proposed.
We describe a simple method to automatically locate critical points in
(Quantum) Monte Carlo simulations. The algorithm assumes the existence of a
finite correlation length in at least one of the two phases surrounding the
quantum critical point. We illustrate these ideas on the example of the
critical inter-chain coupling for which coupled antiferromagnetic S=1 spin
chains order at T=0. Finite-size scaling relations are used to determine the
exponents, and in agreement with previous
estimates.Comment: 5 pages, 3 figures, published versio
Far-from-equilibrium quantum many-body dynamics
The theory of real-time quantum many-body dynamics as put forward in Ref.
[arXiv:0710.4627] is evaluated in detail. The formulation is based on a
generating functional of correlation functions where the Keldysh contour is
closed at a given time. Extending the Keldysh contour from this time to a later
time leads to a dynamic flow of the generating functional. This flow describes
the dynamics of the system and has an explicit causal structure. In the present
work it is evaluated within a vertex expansion of the effective action leading
to time evolution equations for Green functions. These equations are applicable
for strongly interacting systems as well as for studying the late-time
behaviour of nonequilibrium time evolution. For the specific case of a bosonic
N-component phi^4 theory with contact interactions an s-channel truncation is
identified to yield equations identical to those derived from the 2PI effective
action in next-to-leading order of a 1/N expansion. The presented approach
allows to directly obtain non-perturbative dynamic equations beyond the widely
used 2PI approximations.Comment: 20 pp., 6 figs; submitted version with added references and typos
corrected
A Step Beyond the Bounce: Bubble Dynamics in Quantum Phase Transitions
We study the dynamical evolution of a phase interface or bubble in the
context of a \lambda \phi^4 + g \phi^6 scalar quantum field theory. We use a
self-consistent mean-field approximation derived from a 2PI effective action to
construct an initial value problem for the expectation value of the quantum
field and two-point function. We solve the equations of motion numerically in
(1+1)-dimensions and compare the results to the purely classical evolution. We
find that the quantum fluctuations dress the classical profile, affecting both
the early time expansion of the bubble and the behavior upon collision with a
neighboring interface.Comment: 12 pages, multiple figure
The Effects of Disorder on the Quantum Hall State
A disorder-averaged Hartree-Fock treatment is used to compute the density of
single particle states for quantum Hall systems at filling factor . It
is found that transport and spin polarization experiments can be simultaneously
explained by a model of mostly short-range effective disorder. The slope of the
transport gap (due to quasiparticles) in parallel field emerges as a result of
the interplay between disorder-induced broadening and exchange, and has
implications for skyrmion localization.Comment: 4 pages, 3 eps figure
Development and validation of a computational model of the knee joint for the evaluation of surgical treatments for osteoarthritis
A three-dimensional (3D) knee joint computational model was developed and validated to predict knee joint contact forces
and pressures for different degrees of malalignment. A 3D computational knee model was created from high-resolution
radiological images to emulate passive sagittal rotation (full-extension to 658-flexion) and weight acceptance. A cadaveric
knee mounted on a six-degree-of-freedom robot was subjected to matching boundary and loading conditions. A ligamenttuning
process minimised kinematic differences between the robotically loaded cadaver specimen and the finite element
(FE) model. The model was validated by measured intra-articular force and pressure measurements. Percent full scale error
between FE-predicted and in vitro-measured values in the medial and lateral compartments were 6.67% and 5.94%,
respectively, for normalised peak pressure values, and 7.56% and 4.48%, respectively, for normalised force values. The knee
model can accurately predict normalised intra-articular pressure and forces for different loading conditions and could be
further developed for subject-specific surgical planning
Racial discrimination and the health and wellbeing of Aboriginal and Torres Strait Islander children: Does the timing of first exposure matter?
Racial discrimination has been observed to negatively impact on the health of Aboriginal and Torres Strait Islander children, although evidence surrounding periods of greater vulnerability to the stressor of racism have not yet been explored in this population. We compared first exposure to interpersonal racism at either ages 4–5 years or 7 years with no exposure to examine the influence of sensitive periods of racism exposure on mental health and physiological outcomes during middle childhood (7–12 years).
The study cohort comprised 1,759 Aboriginal and Torres Strait Islander children aged 4–12 years from waves 2–8 (2009–2015) of the Footprints in Time: 1The Longitudinal Study of Indigenous Children (LSIC) dataset. Multilevel logistic regression was used in all analysis.
We observed a larger effect (OR: 2.8; 95% CI: 1.4–5.4) for negative mental health with first exposure at 4–5 years compared to 7 years (OR: 2.1; 95% CI: 1.2–3.6), referenced to children with no exposure. Effect sizes were similar in both exposure groups for the significantly increased risk of sleep difficulties, while a stronger adverse effect on behavioural issues was found at 7 years (OR: 2.2; 95% CI: 1.3–4.0) relative to 4–5 years (OR: 1.7; 95% CI: 0.8–3.7). No significant associations were found with general health, obesity or being underweight.
This study generates new evidence surrounding sensitive periods of exposure to racism in Aboriginal and Torres Strait Islander children. A pattern of consistently greater adverse effects on mental and physiological health was not observed with first exposure at 4–5 compared to 7 years, although initial evidence indicates that first exposure to racism at these ages increases the likelihood of negative mental health relative to children without racism exposure. Longitudinal data extending from earlier to later developmental periods will allow further investigations into the presence of sensitive periods of exposure to racism in these children
Search for Global Dipole Enhancements in the HiRes-I Monocular Data above 10^{18.5} eV
Several proposed source models for Ultra-High Energy Cosmic Rays (UHECRs)
consist of dipole distributions oriented towards major astrophysical landmarks
such as the galactic center, M87, or Centaurus A. We use a comparison between
real data and simulated data to show that the HiRes-I monocular data for
energies above 10^{18.5} eV is, in fact, consistent with an isotropic source
model. We then explore methods to quantify our sensitivity to dipole source
models oriented towards the Galactic Center, M87, and Centaurus A.Comment: 17 pages, 31 figure
- …
