1,410 research outputs found
Edge excitations and Topological orders in rotating Bose gases
The edge excitations and related topological orders of correlated states of a
fast rotating Bose gas are studied. Using exact diagonalization of small
systems, we compute the energies and number of edge excitations, as well as the
boson occupancy near the edge for various states. The chiral Luttinger-liquid
theory of Wen is found to be a good description of the edges of the bosonic
Laughlin and other states identified as members of the principal Jain sequence
for bosons. However, we find that in a harmonic trap the edge of the state
identified as the Moore-Read (Pfaffian) state shows a number of anomalies. An
experimental way of detecting these correlated states is also discussed.Comment: Results extended to larger systems. Improved presentatio
Stochastic dynamics of a warmer Great Barrier Reef
Pressure on natural communities from human activities continues to increase. Even unique ecosystems like the Great Barrier Reef (GBR), that until recently were considered near-pristine and well-protected, are showing signs of rapid degradation. We collated recent (1996-2006) spatiotemporal relationships between benthic community composition on the GBR and environmental variables (ocean temperature and local threats resulting from human activity). We built multivariate models of the effects of these variables on short-term dynamics, and developed an analytical approach to study their long-term consequences. We used this approach to study the effects of ocean warming under different levels of local threat. Observed short-term changes in benthic community structure (e.g., declining coral cover) were associated with ocean temperature (warming) and local threats. Our model projected that, in the long term, coral cover of less than 10% was not implausible. With increasing temperature and/or local threats, corals were initially replaced by sponges, gorgonians, and other taxa, with an eventual moderately high probability of domination (>50%) by macroalgae when temperature increase was greatest (e.g., 3.58C of warming). Our approach to modeling community dynamics, based on multivariate statistical models, enabled us to project how environmental change (and thus local and international policy decisions) will influence the future state of coral reefs. The same approach could be applied to other systems for which time series of ecological and environmental variables are available
Application of the DP4 Probability Method to Flexible Cyclic Peptides with Multiple Independent Stereocenters: The True Structure of Cyclocinamide A
A DP4 protocol has been successfully utilized to establish the true structure of the natural product cyclocinamide A, a flexible cyclic peptide with four isolated stereocenters. Benchmarking the necessary level of theory required to successfully predict the NMR spectra of three previously synthesized isomers of cyclocinamide A led to the prediction of the natural stereochemistry as 4S, 7R, 11R, 14S, which has been confirmed by total synthesis
The Transition to a Giant Vortex Phase in a Fast Rotating Bose-Einstein Condensate
We study the Gross-Pitaevskii (GP) energy functional for a fast rotating
Bose-Einstein condensate on the unit disc in two dimensions. Writing the
coupling parameter as 1 / \eps^2 we consider the asymptotic regime \eps
\to 0 with the angular velocity proportional to
(\eps^2|\log\eps|)^{-1} . We prove that if \Omega = \Omega_0
(\eps^2|\log\eps|)^{-1} and then a minimizer of
the GP energy functional has no zeros in an annulus at the boundary of the disc
that contains the bulk of the mass. The vorticity resides in a complementary
`hole' around the center where the density is vanishingly small. Moreover, we
prove a lower bound to the ground state energy that matches, up to small
errors, the upper bound obtained from an optimal giant vortex trial function,
and also that the winding number of a GP minimizer around the disc is in accord
with the phase of this trial function.Comment: 52 pages, PDFLaTex. Minor corrections, sign convention modified. To
be published in Commun. Math. Phy
Competition between quantum-liquid and electron-solid phases in intermediate Landau levels
On the basis of energy calculations we investigate the competition between
quantum-liquid and electron-solid phases in the Landau levels n=1,2, and 3 as a
function of their partial filling factor. Whereas the quantum-liquid phases are
stable only in the vicinity of quantized values 1/(2s+1) of the partial filling
factor, an electron solid in the form of a triangular lattice of clusters with
a few number of electrons (bubble phase) is energetically favorable between
these fillings. This alternation of electron-solid phases, which are insulating
because they are pinned by the residual impurities in the sample, and quantum
liquids displaying the fractional quantum Hall effect explains a recently
observed reentrance of the integral quantum Hall effect in the Landau levels
n=1 and 2. Around half-filling of the last Landau level, a uni-directional
charge density wave (stripe phase) has a lower energy than the bubble phase.Comment: 12 pages, 9 figures; calculation of exact exchange potential for
n=1,2,3 included, energies of electron-solid phases now calculated with the
help of the exact potential, and discussion of approximation include
Vortex Rings in Fast Rotating Bose-Einstein Condensates
When Bose-Eintein condensates are rotated sufficiently fast, a giant vortex
phase appears, that is the condensate becomes annular with no vortices in the
bulk but a macroscopic phase circulation around the central hole. In a former
paper [M. Correggi, N. Rougerie, J. Yngvason, {\it arXiv:1005.0686}] we have
studied this phenomenon by minimizing the two dimensional Gross-Pitaevskii
energy on the unit disc. In particular we computed an upper bound to the
critical speed for the transition to the giant vortex phase. In this paper we
confirm that this upper bound is optimal by proving that if the rotation speed
is taken slightly below the threshold there are vortices in the condensate. We
prove that they gather along a particular circle on which they are evenly
distributed. This is done by providing new upper and lower bounds to the GP
energy.Comment: to appear in Archive of Rational Mechanics and Analysi
Raman scattering studies of spin, charge, and lattice dynamics in Ca_{2-x}Sr_{x}RuO_{4} (0 =< x < 0.2)
We use Raman scattering to study spin, charge, and lattice dynamics in
various phases of Ca_{2-x}Sr_{x}RuO_{4}. With increasing substitution of Ca by
Sr in the range 0 =< x < 0.2, we observe (1) evidence for an increase of the
electron-phonon interaction strength, (2) an increased temperature-dependence
of the two-magnon energy and linewidth in the antiferromagnetic insulating
phase, and (3) evidence for charge gap development, and hysteresis associated
with the structural phase change, both of which are indicative of a first-order
metal-insulator transition (T_{MI}) and a coexistence of metallic and
insulating components for T < T_{MI}
A cluster theory for a Janus fluid
Recent Monte Carlo simulations on the Kern and Frenkel model of a Janus fluid
have revealed that in the vapour phase there is the formation of preferred
clusters made up of a well-defined number of particles: the micelles and the
vesicles. A cluster theory is developed to approximate the exact clustering
properties stemming from the simulations. It is shown that the theory is able
to reproduce the micellisation phenomenon.Comment: 27 pages, 8 figures, 6 table
Nonequilibrium Evolution of Correlation Functions: A Canonical Approach
We study nonequilibrium evolution in a self-interacting quantum field theory
invariant under space translation only by using a canonical approach based on
the recently developed Liouville-von Neumann formalism. The method is first
used to obtain the correlation functions both in and beyond the Hartree
approximation, for the quantum mechanical analog of the model. The
technique involves representing the Hamiltonian in a Fock basis of annihilation
and creation operators. By separating it into a solvable Gaussian part
involving quadratic terms and a perturbation of quartic terms, it is possible
to find the improved vacuum state to any desired order. The correlation
functions for the field theory are then investigated in the Hartree
approximation and those beyond the Hartree approximation are obtained by
finding the improved vacuum state corrected up to . These
correlation functions take into account next-to-leading and
next-to-next-to-leading order effects in the coupling constant. We also use the
Heisenberg formalism to obtain the time evolution equations for the equal-time,
connected correlation functions beyond the leading order. These equations are
derived by including the connected 4-point functions in the hierarchy. The
resulting coupled set of equations form a part of infinite hierarchy of coupled
equations relating the various connected n-point functions. The connection with
other approaches based on the path integral formalism is established and the
physical implications of the set of equations are discussed with particular
emphasis on thermalization.Comment: Revtex, 32 pages; substantial new material dealing with
non-equilibrium evolution beyond Hartree approx. based on the LvN formalism,
has been adde
- …