17,727 research outputs found

    Jiri Menzel and the History of the Closely Watched Trains

    Get PDF

    Uninsured Motorist Coverage--Charting the Kentucky Course

    Get PDF

    The Incidence of Low-Metallicity Lyman-Limit Systems at z~3.5: Implications for the Cold-Flow Hypothesis of Baryonic Accretion

    Get PDF
    Cold accretion is a primary growth mechanism of simulated galaxies, yet observational evidence of "cold flows" at redshifts where they should be most efficient (z=2z=2-4) is scarce. In simulations, cold streams manifest as Lyman-limit absorption systems (LLSs) with low heavy-element abundances similar to those of the diffuse IGM. Here we report on an abundance survey of 17 H I-selected LLSs at z=3.2z=3.2-4.4 which exhibit no metal absorption in SDSS spectra. Using medium-resolution spectra obtained at Magellan, we derive ionization-corrected metallicities (or limits) with a Markov-Chain Monte Carlo sampling that accounts for the large uncertainty in NHIN_{\rm HI} measurements typical of LLSs. The metal-poor LLS sample overlaps with the IGM in metallicity and is best described by a model where 71−11+13%71^{+13}_{-11}\% are drawn from the IGM chemical abundance distribution. These represent roughly half of all LLSs at these redshifts, suggesting that 28-40%\% of the general LLS population at z∼3.7z\sim3.7 could trace unprocessed gas. An ancillary sample of ten LLSs without any a priori metal-line selection is best fit with 48−12+14%48^{+14}_{-12}\% of metallicities drawn from the IGM. We compare these results with regions of a moving-mesh simulation; the simulation finds only half as many baryons in IGM-metallicity LLSs, and most of these lie beyond the virial radius of the nearest galaxy halo. A statistically significant fraction of all LLSs have low metallicity and therefore represent candidates for accreting gas; large-volume simulations can establish what fraction of these candidates actually lie near galaxies and the observational prospects for detecting the presumed hosts in emission.Comment: 19 pages, 17 figures; Submitted to ApJ; Corrected figure 16

    Symposium Introduction: Advancing Intellectual Property Goals Through Prevention and Alternative Dispute Resolution

    Get PDF
    This essay offers a brief background to the issues that prompted a global exploration of alternative methods for preventing and resolving IP disputes. Part One describes the exploding importance of IP rights and law and consequent challenges to court adjudication. Part Two offers a snapshot of current IP enforcement methods: traditional and emerging, public and private, domestic and international. Part Three suggests factors toward matching IP problems with alternative procedures for their effective resolution. Finally, woven throughout this essay is a recommendation of stronger involvement by public domestic or international bodies in dispute prevention and ADR methods

    Central Role of Glutamate Metabolism in the Maintenance of Nitrogen Homeostasis in Normal and Hyperammonemic Brain

    Get PDF
    Glutamate is present in the brain at an average concentration-typically 10-12 mM-far in excess of those of other amino acids. In glutamate-containing vesicles in the brain, the concentration of glutamate may even exceed 100 mM. Yet because glutamate is a major excitatory neurotransmitter, the concentration of this amino acid in the cerebral extracellular fluid must be kept low-typically µM. The remarkable gradient of glutamate in the different cerebral compartments: vesicles \u3e cytosol/mitochondria \u3e extracellular fluid attests to the extraordinary effectiveness of glutamate transporters and the strict control of enzymes of glutamate catabolism and synthesis in well-defined cellular and subcellular compartments in the brain. A major route for glutamate and ammonia removal is via the glutamine synthetase (glutamate ammonia ligase) reaction. Glutamate is also removed by conversion to the inhibitory neurotransmitter γ-aminobutyrate (GABA) via the action of glutamate decarboxylase. On the other hand, cerebral glutamate levels are maintained by the action of glutaminase and by various α-ketoglutarate-linked aminotransferases (especially aspartate aminotransferase and the mitochondrial and cytosolic forms of the branched-chain aminotransferases). Although the glutamate dehydrogenase reaction is freely reversible, owing to rapid removal of ammonia as glutamine amide, the direction of the glutamate dehydrogenase reaction in the brain in vivo is mainly toward glutamate catabolism rather than toward the net synthesis of glutamate, even under hyperammonemia conditions. During hyperammonemia, there is a large increase in cerebral glutamine content, but only small changes in the levels of glutamate and α-ketoglutarate. Thus, the channeling of glutamate toward glutamine during hyperammonemia results in the net synthesis of 5-carbon units. This increase in 5-carbon units is accomplished in part by the ammonia-induced stimulation of the anaplerotic enzyme pyruvate carboxylase. Here, we suggest that glutamate may constitute a buffer or bulwark against changes in cerebral amine and ammonia nitrogen. Although the glutamate transporters are briefly discussed, the major emphasis of the present review is on the enzymology contributing to the maintenance of glutamate levels under normal and hyperammonemic conditions. Emphasis will also be placed on the central role of glutamate in the glutamine-glutamate and glutamine-GABA neurotransmitter cycles between neurons and astrocytes. Finally, we provide a brief and selective discussion of neuropathology associated with altered cerebral glutamate levels

    Evidence for shape coexistence in 98^{98}Mo

    Full text link
    A γγ\gamma\gamma angular correlation experiment has been performed to investigate the low-energy states of the nucleus 98^{98}Mo. The new data, including spin assignments, multipole mixing ratios and lifetimes reveal evidence for shape coexistence and mixing in 98^{98}Mo, arising from a proton intruder configuration. This result is reproduced by a theoretical calculation within the proton-neutron interacting boson model with configuration mixing, based on microscopic energy density functional theory. The microscopic calculation indicates the importance of the proton particle-hole excitation across the Z=40 sub-shell closure and the subsequent mixing between spherical vibrational and the γ\gamma-soft equilibrium shapes in 98^{98}Mo.Comment: 6 pages, 5 figures, 3 tables; published in Phys. Rev.

    Raman modes of the deformed single-wall carbon nanotubes

    Full text link
    With the empirical bond polarizability model, the nonresonant Raman spectra of the chiral and achiral single-wall carbon nanotubes (SWCNTs) under uniaxial and torsional strains have been systematically studied by \textit{ab initio} method. It is found that both the frequencies and the intensities of the low-frequency Raman active modes almost do not change in the deformed nanotubes, while their high-frequency part shifts obviously. Especially, the high-frequency part shifts linearly with the uniaxial tensile strain, and two kinds of different shift slopes are found for any kind of SWCNTs. More interestingly, new Raman peaks are found in the nonresonant Raman spectra under torsional strain, which are explained by a) the symmetry breaking and b) the effect of bond rotation and the anisotropy of the polarizability induced by bond stretching
    • …
    corecore