723 research outputs found

    Free expansion of lowest Landau level states of trapped atoms: a wavefunction microscope

    Full text link
    We show that for any lowest-Landau-level state of a trapped, rotating, interacting Bose gas, the particle distribution in coordinate space in a free expansion (time of flight) experiment is related to that in the trap at the time it is turned off by a simple rescaling and rotation. When the lowest-Landau-level approximation is valid, interactions can be neglected during the expansion, even when they play an essential role in the ground state when the trap is present. The correlations in the density in a single snapshot can be used to obtain information about the fluid, such as whether a transition to a quantum Hall state has occurred.Comment: 5 pages, no figures. v2: discussion of neglect of interactions during expansion improved, refs adde

    Strongly correlated phases in rapidly rotating Bose gases

    Full text link
    We consider a system of trapped spinless bosons interacting with a repulsive potential and subject to rotation. In the limit of rapid rotation and small scattering length, we rigorously show that the ground state energy converges to that of a simplified model Hamiltonian with contact interaction projected onto the Lowest Landau Level. This effective Hamiltonian models the bosonic analogue of the Fractional Quantum Hall Effect (FQHE). For a fixed number of particles, we also prove convergence of states; in particular, in a certain regime we show convergence towards the bosonic Laughlin wavefunction. This is the first rigorous justification of the effective FQHE Hamiltonian for rapidly rotating Bose gases. We review previous results on this effective Hamiltonian and outline open problems.Comment: AMSLaTeX, 23 page

    Thomas-Fermi-Poisson theory of screening for latterally confined and unconfined two-dimensional electron systems in strong magnetic fields

    Full text link
    We examine within the self-consistent Thomas-Fermi-Poisson approach the low-temperature screening properties of a two-dimensional electron gas (2DEG) subjected to strong perpendicular magnetic fields. Numerical results for the unconfined 2DEG are compared with those for a simplified Hall bar geometry realized by two different confinement models. It is shown that in the strongly non-linear screening limit of zero temperature the total variation of the screened potential is related by simple analytical expressions to the amplitude of an applied harmonic modulation potential and to the strength of the magnetic field.Comment: 12 pages, 12 figure

    Vortices and dynamics in trapped Bose-Einstein condensates

    Full text link
    I review the basic physics of ultracold dilute trapped atomic gases, with emphasis on Bose-Einstein condensation and quantized vortices. The hydrodynamic form of the Gross-Pitaevskii equation (a nonlinear Schr{\"o}dinger equation) illuminates the role of the density and the quantum-mechanical phase. One unique feature of these experimental systems is the opportunity to study the dynamics of vortices in real time, in contrast to typical experiments on superfluid 4^4He. I discuss three specific examples (precession of single vortices, motion of vortex dipoles, and Tkachenko oscillations of a vortex array). Other unusual features include the study of quantum turbulence and the behavior for rapid rotation, when the vortices form dense regular arrays. Ultimately, the system is predicted to make a quantum phase transition to various highly correlated many-body states (analogous to bosonic quantum Hall states) that are not superfluid and do not have condensate wave functions. At present, this transition remains elusive. Conceivably, laser-induced synthetic vector potentials can serve to reach this intriguing phase transition.Comment: Accepted for publication in Journal of Low Temperature Physics, conference proceedings: Symposia on Superfluids under Rotation (Lammi, Finland, April 2010

    Cooperative Ring Exchange and Quantum Melting of Vortex Lattices in Atomic Bose-Einstein Condensates

    Get PDF
    Cooperative ring-exchange is suggested as a mechanism of quantum melting of vortex lattices in a rapidly-rotating quasi two dimensional atomic Bose-Einstein condensate (BEC). Using an approach pioneered by Kivelson et al. [Phys. Rev. Lett. {\bf 56}, 873 (1986)] for the fractional quantized Hall effect, we calculate the condition for quantum melting instability by considering large-correlated ring exchanges in a two-dimensional Wigner crystal of vortices in a strong `pseudomagnetic field' generated by the background superfluid Bose particles. BEC may be profitably used to address issues of quantum melting of a pristine Wigner solid devoid of complications of real solids.Comment: 7 pages, 1 figure, to appear in Physical Review

    The excitation spectrum for weakly interacting bosons in a trap

    Full text link
    We investigate the low-energy excitation spectrum of a Bose gas confined in a trap, with weak long-range repulsive interactions. In particular, we prove that the spectrum can be described in terms of the eigenvalues of an effective one-particle operator, as predicted by the Bogoliubov approximation.Comment: LaTeX, 32 page

    Rapidly Rotating Fermions in an Anisotropic Trap

    Get PDF
    We consider a cold gas of non-interacting fermions in a two dimensional harmonic trap with two different trapping frequencies ωxωy\omega_x \leq \omega_y, and discuss the effect of rotation on the density profile. Depending on the rotation frequency Ω\Omega and the trap anisotropy ωy/ωx\omega_y/\omega_x, the density profile assumes two qualitatively different shapes. For small anisotropy (ωy/ωx1+4Ω2/ωx2\omega_y/\omega_x \ll \sqrt{1+4 \Omega^2/\omega_x^2}), the density consists of elliptical plateaus of constant density, corresponding to Landau levels and is well described by a two dimensional local density approximation. For large anisotropy (ωy/ωx1+4Ω2/ωx2\omega_y/\omega_x \gg \sqrt{1+4 \Omega^2/\omega_x^2}), the density profile is Gaussian in the strong confining direction and semicircular with prominent Friedel oscillations in the weak direction. In this regime, a one dimensional local density approximation is well suited to describe the system. The crossover between the two regimes is smooth where the step structure between the Landau level edges turn into Friedel oscillations. Increasing the temperature causes the step structure or the Friedel oscillations to wash out leaving a Boltzmann gas density profile.Comment: 14 pages, 7 figure

    Exclusion Statistics of Quasiparticles in Condensed States of Composite Fermion Excitations

    Full text link
    The exclusion statistics of quasiparticles is found at any level of the hierarchy of condensed states of composite fermion excitations (for which experimental indications have recently been found). The hierarchy of condensed states of excitations in boson Jain states is introduced and the statistics of quasiparticles is found. The quantum Hall states of charged α\alpha-anyons (α\alpha -- the exclusion statistics parameter) can be described as incompressible states of (α+2p)(\alpha+2p)-anyons (2p2p -- an even number).Comment: 4 page

    Spinor Bose-Einstein Condensates with Many Vortices

    Get PDF
    Vortex-lattice structures of antiferromagnetic spinor Bose-Einstein condensates with hyperfine spin F=1 are investigated theoretically based on the Ginzburg-Pitaevskii equations near TcT_{c}. The Abrikosov lattice with clear core regions are found {\em never stable} at any rotation drive Ω\Omega. Instead, each component Ψi\Psi_{i} (i=0,±1)(i=0,\pm 1) prefers to shift the core locations from the others to realize almost uniform order-parameter amplitude with complicated magnetic-moment configurations. This system is characterized by many competing metastable structures so that quite a variety of vortices may be realized with a small change in external parameters.Comment: 4 page

    Control of Autophagosome Axonal Retrograde Flux by Presynaptic Activity Unveiled Using Botulinum Neurotoxin Type A

    Get PDF
    Botulinum neurotoxin type A (BoNT/A) is a highly potent neurotoxin that elicits flaccid paralysis by enzymatic cleavage of the exocytic machinery component SNAP25 in motor nerve terminals. However, recent evidence suggests that the neurotoxic activity of BoNT/A is not restricted to the periphery, but also reaches the CNS after retrograde axonal transport. Because BoNT/A is internalized in recycling synaptic vesicles, it is unclear which compartment facilitates this transport. Using live-cell confocal and single-molecule imaging of rat hippocampal neurons cultured in microfluidic devices, we show that the activity-dependent uptake of the binding domain of the BoNT/A heavy chain (BoNT/A-Hc) is followed by a delayed increase in retrograde axonal transport of BoNT/A-Hc carriers. Consistent with a role of presynaptic activity in initiating transport of the active toxin, activity-dependent uptake of BoNT/A in the terminal led to a significant increase in SNAP25 cleavage detected in the soma chamber compared with nonstimulated neurons. Surprisingly, most endocytosed BoNT/A-Hc was incorporated into LC3-positive autophagosomes generated in the nerve terminals, which then underwent retrograde transport to the cell soma, where they fused with lysosomes both in vitro and in vivo. Blocking autophagosome formation or acidification with wortmannin or bafilomycin A1, respectively, inhibited the activity-dependent retrograde trafficking of BoNT/A-Hc. Our data demonstrate that both the presynaptic formation of autophagosomes and the initiation of their retrograde trafficking are tightly regulated by presynaptic activity
    corecore