702 research outputs found

    The use of honey in healing a recalcitrant wound following surgical treatment of hidradenitis suppurativa

    Get PDF
    Ancient civilizations used honey to heal wounds. Despite the rediscovery of honey by modern physicians1 its use in conventional medicine, unlike in complementary medicine, remains limited. Much anecdotal evidence, some clinical observations, some animal models and some randomised controlled trials support the efficacy of honey in managing wounds2,3 , but few detailed descriptions of the use of honey in healing difficult surgical wounds have previously been published

    Continuity theorems for the M/M/1/nM/M/1/n queueing system

    Full text link
    In this paper continuity theorems are established for the number of losses during a busy period of the M/M/1/nM/M/1/n queue. We consider an M/GI/1/nM/GI/1/n queueing system where the service time probability distribution, slightly different in a certain sense from the exponential distribution, is approximated by that exponential distribution. Continuity theorems are obtained in the form of one or two-sided stochastic inequalities. The paper shows how the bounds of these inequalities are changed if further assumptions, associated with specific properties of the service time distribution (precisely described in the paper), are made. Specifically, some parametric families of service time distributions are discussed, and the paper establishes uniform estimates (given for all possible values of the parameter) and local estimates (where the parameter is fixed and takes only the given value). The analysis of the paper is based on the level crossing approach and some characterization properties of the exponential distribution.Comment: Final revision; will be published as i

    Thermal analysis of production of resonances in relativistic heavy-ion collisions

    Full text link
    Production of resonances is considered in the framework of the single-freeze-out model of ultra-relativistic heavy ion collisions. The formalism involves the virial expansion, where the probability to form a resonance in a two-body channel is proportional to the derivative of the phase-shift with respect to the invariant mass. The thermal model incorporates longitudinal and transverse flow, as well as kinematic cuts of the STAR experiment at RHIC. We find that the shape of the pi+ pi- spectral line qualitatively reproduces the preliminary experimental data when the position of the rho peak is lowered. This confirms the need to include the medium effects in the description of the RHIC data. We also analyze the transverse-momentum spectra of rho, K*(892), and f_0(980), and find that the slopes agree with the observed values. Predictions are made for eta, eta', omega, phi, Lambda(1520), and Sigma(1385).Comment: minor modifications, a reference adde

    Radiative β decay of the free neutron

    Get PDF
    The theory of quantum electrodynamics predicts that the β decay of the neutron into a proton, electron, and antineutrino is accompanied by a continuous spectrum of emitted photons described as inner bremsstrahlung. While this phenomenon has been observed in nuclear β decay and electron-capture decay for many years, it has only been recently observed in free-neutron decay. We present a detailed discussion of an experiment in which the radiative decay mode of the free neutron was observed. In this experiment, the branching ratio for this rare decay was determined by recording photons that were correlated with both the electron and proton emitted in neutron decay. We determined the branching ratio for photons with energy between 15 and 340 keV to be (3.09±0.32)×10-3 (68% level of confidence), where the uncertainty is dominated by systematic effects. This value for the branching ratio is consistent with theoretical predictions. The characteristic energy spectrum of the radiated photons, which differs from the uncorrelated background spectrum, is also consistent with the theoretical spectrum

    Recommendations for The Conduct of Economic Evaluations in Osteoporosis: Outcomes of An Experts’ Consensus Meeting Organized by The European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) And the US Branch of The International Osteoporosis Foundation

    Get PDF
    Summary Economic evaluations are increasingly used to assess the value of health interventions, but variable quality and heterogeneity limit the use of these evaluations by decision-makers. These recommendations provide guidance for the design, conduct, and reporting of economic evaluations in osteoporosis to improve their transparency, comparability, and methodologic standards. Introduction This paper aims to provide recommendations for the conduct of economic evaluations in osteoporosis in order to improve their transparency, comparability, and methodologic standards. Methods A working group was convened by the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis to make recommendations for the design, conduct, and reporting of economic evaluations in osteoporosis, to define an osteoporosis-specific reference case to serve a minimum standard for all economic analyses in osteoporosis, to discuss methodologic challenges and initiate a call for research. A literature review, a face-to-face meeting in New York City (including 11 experts), and a review/approval by a larger group of experts worldwide (including 23 experts in total) were conducted. Results Recommendations on the type of economic evaluation, methods for economic evaluation, modeling aspects, base-case analysis and population, excess mortality, fracture costs and disutility, treatment characteristics, and model validation were provided. Recommendations for reporting economic evaluations in osteoporosis were also made and an osteoporosis-specific checklist was designed that includes items to report when performing an economic evaluation in osteoporosis. Further, 12 minimum criteria for economic evaluations in osteoporosis were identified and 12 methodologic challenges and need for further research were discussed. Conclusion While the working group acknowledges challenges and the need for further research, these recommendations are intended to supplement general and national guidelines for economic evaluations, improve transparency, quality, and comparability of economic evaluations in osteoporosis, and maintain methodologic standards to increase their use by decision-makers

    QCD Corrections to QED Vacuum Polarization

    Full text link
    We compute QCD corrections to QED calculations for vacuum polarization in background magnetic fields. Formally, the diagram for virtual eeˉe\bar{e} loops is identical to the one for virtual qqˉq\bar{q} loops. However due to confinement, or to the growth of αs\alpha_s as p2p^2 decreases, a direct calculation of the diagram is not allowed. At large p2p^2 we consider the virtual qqˉq\bar{q} diagram, in the intermediate region we discuss the role of the contribution of quark condensates \left and at the low-energy limit we consider the π0\pi^0, as well as charged pion π+π\pi^+\pi^- loops. Although these effects seem to be out of the measurement accuracy of photon-photon laboratory experiments they may be relevant for γ\gamma-ray burst propagation. In particular, for emissions from the center of the galaxy (8.5 kpc), we show that the mixing between the neutral pseudo-scalar pion π0\pi_0 and photons renders a deviation from the power-law spectrum in the TeVTeV range. As for scalar quark condensates \left and virtual qqˉq\bar{q} loops are relevant only for very high radiation density 300MeV/fm3\sim 300 MeV/fm^3 and very strong magnetic fields of order 1014T\sim 10^{14} T.Comment: 15 pages, 4 figures; Final versio

    Stress corrosion cracking in Al-Zn-Mg-Cu aluminum alloys in saline environments

    Get PDF
    Copyright 2013 ASM International. This paper was published in Metallurgical and Materials Transactions A, 44A(3), 1230 - 1253, and is made available as an electronic reprint with the permission of ASM International. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplications of any material in this paper for a fee or for commercial purposes, or modification of the content of this paper are prohibited.Stress corrosion cracking of Al-Zn-Mg-Cu (AA7xxx) aluminum alloys exposed to saline environments at temperatures ranging from 293 K to 353 K (20 °C to 80 °C) has been reviewed with particular attention to the influences of alloy composition and temper, and bulk and local environmental conditions. Stress corrosion crack (SCC) growth rates at room temperature for peak- and over-aged tempers in saline environments are minimized for Al-Zn-Mg-Cu alloys containing less than ~8 wt pct Zn when Zn/Mg ratios are ranging from 2 to 3, excess magnesium levels are less than 1 wt pct, and copper content is either less than ~0.2 wt pct or ranging from 1.3 to 2 wt pct. A minimum chloride ion concentration of ~0.01 M is required for crack growth rates to exceed those in distilled water, which insures that the local solution pH in crack-tip regions can be maintained at less than 4. Crack growth rates in saline solution without other additions gradually increase with bulk chloride ion concentrations up to around 0.6 M NaCl, whereas in solutions with sufficiently low dichromate (or chromate), inhibitor additions are insensitive to the bulk chloride concentration and are typically at least double those observed without the additions. DCB specimens, fatigue pre-cracked in air before immersion in a saline environment, show an initial period with no detectible crack growth, followed by crack growth at the distilled water rate, and then transition to a higher crack growth rate typical of region 2 crack growth in the saline environment. Time spent in each stage depends on the type of pre-crack (“pop-in” vs fatigue), applied stress intensity factor, alloy chemistry, bulk environment, and, if applied, the external polarization. Apparent activation energies (E a) for SCC growth in Al-Zn-Mg-Cu alloys exposed to 0.6 M NaCl over the temperatures ranging from 293 K to 353 K (20 °C to 80 °C) for under-, peak-, and over-aged low-copper-containing alloys (~0.8 wt pct), they are typically ranging from 20 to 40 kJ/mol for under- and peak-aged alloys, and based on limited data, around 85 kJ/mol for over-aged tempers. This means that crack propagation in saline environments is most likely to occur by a hydrogen-related process for low-copper-containing Al-Zn-Mg-Cu alloys in under-, peak- and over-aged tempers, and for high-copper alloys in under- and peak-aged tempers. For over-aged high-copper-containing alloys, cracking is most probably under anodic dissolution control. Future stress corrosion studies should focus on understanding the factors that control crack initiation, and insuring that the next generation of higher performance Al-Zn-Mg-Cu alloys has similar longer crack initiation times and crack propagation rates to those of the incumbent alloys in an over-aged condition where crack rates are less than 1 mm/month at a high stress intensity factor

    Nonequilibrium Quantum Dynamics Of Disoriented Chiral Condensates

    Full text link
    The nonequilibrium dynamics of the chiral phase transition expected during the expansion of the quark-qluon plasma produced in a high energy hadron or heavy ion collision is studied in the O(4) linear sigma model to leading order in a large NN expansion. Starting from an approximate equilibrium configuration at an initial proper time τ\tau in the disordered phase we study the transition to the ordered broken symmetry phase as the system expands and cools. We give results for the proper time evolution of the effective pion mass, the order parameter as well as for the pion two point correlation function expressed in terms of a time dependent phase space number density and pair correlation density. We determine the phase space of initial conditions that lead to instabilities (exponentially growing long wave length modes) as the system evolves in time. These instabilities are what eventually lead to disoriented chiral condensates. In our simulations,we found that instabilities that are formed during the initial phases of the expansion exist for proper times that are at most 3fm/c3 fm/c and lead to condensate regions that do not contain large numbers of particles. The damping of instabilities is a consequence of strong coupling.Comment: 49 pages, figures available by reques
    corecore