3,248 research outputs found

    SLoMo: automated site localization of modifications from ETD/ECD mass spectra

    Get PDF
    Recently, software has become available to automate localization of phosphorylation sites from CID data and to assign associated confidence scores. We present an algorithm, SLoMo (Site Localization of Modifications), which extends this capability to ETD/ECD mass spectra. Furthermore, SLoMo caters for both high and low resolution data and allows for site-localization of any UniMod post-translational modification. SLoMo accepts input data from a variety of formats (e.g., Sequest, OMSSA). We validate SLoMo with high and low resolution ETD, ECD, and CID data

    A murine model of variant late infantile ceroid lipofuscinosis recapitulates behavioral and pathological phenotypes of human disease.

    Get PDF
    Neuronal ceroid lipofuscinoses (NCLs; also known collectively as Batten Disease) are a family of autosomal recessive lysosomal storage disorders. Mutations in as many as 13 genes give rise to ∼10 variants of NCL, all with overlapping clinical symptomatology including visual impairment, motor and cognitive dysfunction, seizures, and premature death. Mutations in CLN6 result in both a variant late infantile onset neuronal ceroid lipofuscinosis (vLINCL) as well as an adult-onset form of the disease called Type A Kufs. CLN6 is a non-glycosylated membrane protein of unknown function localized to the endoplasmic reticulum (ER). In this study, we perform a detailed characterization of a naturally occurring Cln6 mutant (Cln6(nclf)) mouse line to validate its utility for translational research. We demonstrate that this Cln6(nclf) mutation leads to deficits in motor coordination, vision, memory, and learning. Pathologically, we demonstrate loss of neurons within specific subregions and lamina of the cortex that correlate to behavioral phenotypes. As in other NCL models, this model displays selective loss of GABAergic interneuron sub-populations in the cortex and the hippocampus with profound, early-onset glial activation. Finally, we demonstrate a novel deficit in memory and learning, including a dramatic reduction in dendritic spine density in the cerebral cortex, which suggests a reduction in synaptic strength following disruption in CLN6. Together, these findings highlight the behavioral and pathological similarities between the Cln6(nclf) mouse model and human NCL patients, validating this model as a reliable format for screening potential therapeutics

    Proteomic Analysis of a Noninvasive Human Model of Acute Inflammation and Its Resolution: The Twenty-one Day Gingivitis Model

    Get PDF
    The 21-day experimental gingivitis model, an established noninvasive model of inflammation in response to increasing bacterial accumulation in humans, is designed to enable the study of both the induction and resolution of inflammation. Here, we have analyzed gingival crevicular fluid, an oral fluid comprising a serum transudate and tissue exudates, by LC−MS/MS using Fourier transform ion cyclotron resonance mass spectrometry and iTRAQ isobaric mass tags, to establish meta-proteomic profiles of inflammation-induced changes in proteins in healthy young volunteers. Across the course of experimentally induced gingivitis, we identified 16 bacterial and 186 human proteins. Although abundances of the bacterial proteins identified did not vary temporally, Fusobacterium outer membrane proteins were detected. Fusobacterium species have previously been associated with periodontal health or disease. The human proteins identified spanned a wide range of compartments (both extracellular and intracellular) and functions, including serum proteins, proteins displaying antibacterial properties, and proteins with functions associated with cellular transcription, DNA binding, the cytoskeleton, cell adhesion, and cilia. PolySNAP3 clustering software was used in a multilayered analytical approach. Clusters of proteins that associated with changes to the clinical parameters included neuronal and synapse associated proteins

    A New Splice Variant of the Mouse SIRT3 Gene Encodes the Mitochondrial Precursor Protein

    Get PDF
    BACKGROUND: Mammals have seven NAD-dependent protein deacetylases. These proteins, called sirtuins, are homologous to yeast Sir2, and are emerging as important regulators of lifespan and intermediary metabolism. Three mammalian sirtuins, SIRT3-5 are mitochondrial. Sirtuins are highly conserved between species, yet mouse SIRT3 was reported to be markedly shorter than its human counterpart and to lack the N-terminal mitochondrial targeting signal present in the human protein. RESULTS: We have isolated a novel mouse SIRT3 splice variant. This cDNA contains two translation initiation codons upstream of the originally reported start site. We show, using immunofluorescence and protein expression analysis that these longer variants are expressed and efficiently targeted to mitochondria, and that the processed forms of these longer variants are identical in size to the endogenous mouse SIRT3. We also show that the previously described form of SIRT3 is not mitochondrial. CONCLUSIONS: Our observations point to a high level of conservation of SIRT3 as a mitochondrial protein in mice and human and indicate that several previous studies, which addressed mouse Sirt3 function, need to be re-evaluated

    Neogenin and RGMa control neural tube closure and neuroepithelial morphology by regulating cell polarity

    Get PDF
    In humans, neural tube closure defects occur in 1: 1000 pregnancies. The design of new strategies for the prevention of such common defects would benefit from an improved understanding of the molecular events underlying neurulation. Neural fold elevation is a key morphological process that acts during neurulation to drive neural tube closure. However, to date, the molecular pathways underpinning neural fold elevation have not been elucidated. Here, we use morpholino knock-down technology to demonstrate that Repulsive Guidance Molecule (RGMa)-Neogenin interactions are essential for effective neural fold elevation during Xenopus neurulation and that loss of these molecules results in disrupted neural tube closure. We demonstrate that Neogenin and RGMa are required for establishing the morphology of deep layer cells in the neural plate throughout neurulation. We also show that loss of Neogenin severely disrupts the microtubule network within the deep layer cells suggesting that Neogenin-dependent microtubule organization within the deep cells is essential for radial intercalation with the overlying superficial cell layer, thereby driving neural fold elevation. In addition, we show that sustained Neogenin activity is also necessary for the establishment of the apicobasally polarized pseudostratified neuroepithelium of the neural tube. Therefore, our study identifies a novel signaling pathway essential for radial intercalation and epithelialization during neural fold elevation and neural tube morphogenesis. Copyright ©2008 Society for Neuroscienc

    Mutations in Drosophila Greatwall/Scant Reveal Its Roles in Mitosis and Meiosis and Interdependence with Polo Kinase

    Get PDF
    Polo is a conserved kinase that coordinates many events of mitosis and meiosis, but how it is regulated remains unclear. Drosophila females having only one wild-type allele of the polo kinase gene and the dominant Scant mutation produce embryos in which one of the centrosomes detaches from the nuclear envelope in late prophase. We show that Scant creates a hyperactive form of Greatwall (Gwl) with altered specificity in vitro, another protein kinase recently implicated in mitotic entry in Drosophila and Xenopus. Excess Gwl activity in embryos causes developmental failure that can be rescued by increasing maternal Polo dosage, indicating that coordination between the two mitotic kinases is crucial for mitotic progression. Revertant alleles of Scant that restore fertility to polo–Scant heterozygous females are recessive alleles or deficiencies of gwl; they show chromatin condensation defects and anaphase bridges in larval neuroblasts. One recessive mutant allele specifically disrupts a Gwl isoform strongly expressed during vitellogenesis. Females hemizygous for this allele are sterile, and their oocytes fail to arrest in metaphase I of meiosis; both homologues and sister chromatids separate on elongated meiotic spindles with little or no segregation. This allelic series of gwl mutants highlights the multiple roles of Gwl in both mitotic and meiotic progression. Our results indicate that Gwl activity antagonizes Polo and thus identify an important regulatory interaction of the cell cycle

    Glial cells are functionally impaired in juvenile neuronal ceroid lipofuscinosis and detrimental to neurons.

    Get PDF
    The neuronal ceroid lipofuscinoses (NCLs or Batten disease) are a group of inherited, fatal neurodegenerative disorders of childhood. In these disorders, glial (microglial and astrocyte) activation typically occurs early in disease progression and predicts where neuron loss subsequently occurs. We have found that in the most common juvenile form of NCL (CLN3 disease or JNCL) this glial response is less pronounced in both mouse models and human autopsy material, with the morphological transformation of both astrocytes and microglia severely attenuated or delayed. To investigate their properties, we isolated glia and neurons from Cln3-deficient mice and studied their basic biology in culture. Upon stimulation, both Cln3-deficient astrocytes and microglia also showed an attenuated ability to transform morphologically, and an altered protein secretion profile. These defects were more pronounced in astrocytes, including the reduced secretion of a range of neuroprotective factors, mitogens, chemokines and cytokines, in addition to impaired calcium signalling and glutamate clearance. Cln3-deficient neurons also displayed an abnormal organization of their neurites. Most importantly, using a co-culture system, Cln3-deficient astrocytes and microglia had a negative impact on the survival and morphology of both Cln3-deficient and wildtype neurons, but these effects were largely reversed by growing mutant neurons with healthy glia. These data provide evidence that CLN3 disease astrocytes are functionally compromised. Together with microglia, they may play an active role in neuron loss in this disorder and can be considered as potential targets for therapeutic interventions

    Engineering small MgAl-layered double hydroxide nanoparticles for enhanced gene delivery

    Get PDF
    In this paper we report an approach for engineering small MgAl-layered double hydroxide (sLDH) nanoparticles with the Z-average diameter of about 40 nm. This method first requires co-precipitation of magnesium and aluminum nitrate solution with sodium hydroxide in methanol, followed by LDH slurry collection and re-suspension in methanol. The methanol suspension is then heated in an autoclave, followed by separation via centrifugation and thorough washing with deionized water. The nanoparticles are finally dispersed in deionized water into homogeneous aqueous suspension after 4–6 day standing at room temperature. In general, sLDH nanoparticles have the Z-average size of 35–50 nm, the number-average size of 14–30 nm and the polydispersity index (PdI) of 0.19–0.25. The prepared sLDH suspension is stable for at least 1 month when stored at fridge (2–8 °C) or ambient (22–25 °C) temperature. Moreover, sLDH nanoparticles are found to carry higher payloads of small double stranded DNA (dsDNA). More excitedly, sLDH nanoparticles transfect dsDNA into HEK 293T cells with a 5 to 6-fold greater efficiency compared to the larger LDH particles (Z-average diameter of 110 nm)
    corecore