12,624 research outputs found

    Vanishing topology of codimension 1 multi-germs over R\Bbb R and C\Bbb C

    Get PDF
    We construct all A\cal Ae-codimension 1 multi-germs of analytic (or smooth) maps (kn, T) [rightward arrow] (kp, 0), with n [gt-or-equal, slanted] p − 1, (n, p) nice dimensions, k = C\mathbb C or R\mathbb R, by augmentation and concatenation operations, starting from mono-germs (|T| = 1) and one 0-dimensional bi-germ. As an application, we prove general statements for multi-germs of corank [less-than-or-eq, slant] 1: every one has a real form with real perturbation carrying the vanishing homology of the complexification, every one is quasihomogeneous, and when n = p − 1 every one has image Milnor number equal to 1 (this last is already known when n [gt-or-equal, slanted] p)

    When Should Judges Appoint Experts?: A Law and Economics Perspective

    Get PDF
    The Supreme Court’s decision in Daubert v. Merrell Dow Pharmaceuticals placed federal judges in the role of “gatekeepers” empowered to evaluate the reliability of often complex expert testimony. Many judges, commentators, and legal scholars have argued that court-appointed experts can assist judges in appropriately carrying out their gatekeeping role. However, previous literature has not evaluated the role of court-appointed experts in a rigorous framework that considers the complex interaction of the incentives of expert witnesses, the impact of expert witnesses on the decision-making of the fact finder, and the knowledge of the judge. In this article, we provide such a framework for assessing the appropriate use of court-appointed experts. We demonstrate that the option to appoint court experts in the role of technical advisors helps lead to appropriate judicial outcomes. Further, we provide guidance on the circumstances in which judges should appoint experts and the frequency with which such appointments should occur

    The SseC translocon component in Salmonella enterica serovar Typhimurium is chaperoned by SscA

    Get PDF
    Background: Salmonella enterica is a causative agent of foodborne gastroenteritis and the systemic disease known as typhoid fever. This bacterium uses two type three secretion systems (T3SSs) to translocate protein effectors into host cells to manipulate cellular function. Salmonella pathogenicity island (SPI)-2 encodes a T3SS required for intracellular survival of the pathogen. Genes in SPI-2 include apparatus components, secreted effectors and chaperones that bind to secreted cargo to coordinate their release from the bacterial cell. Although the effector repertoire secreted by the SPI-2 T3SS is large, only three virulence-associated chaperones have been characterized. Results: Here we report that SscA is the chaperone for the SseC translocon component. We show that SscA and SseC interact in bacterial cells and that deletion of sscA results in a loss of SseC secretion, which compromises intracellular replication and leads to a loss of competitive fitness in mice. Conclusions: This work completes the characterization of the chaperone complement within SPI-2 and identifies SscA as the chaperone for the SseC translocon

    Evaluation of uterine ultrasound imaging in cervical radiotherapy; a comparison of autoscan and conventional probe

    Get PDF
    OBJECTIVE: In cervical radiotherapy, it is essential that the uterine position is correctly determined prior to treatment delivery. The aim of this study was to evaluate an autoscan ultrasound (A-US) probe, a motorized transducer creating three-dimensional (3D) images by sweeping, by comparing it with a conventional ultrasound (C-US) probe, where manual scanning is required to acquire 3D images. METHODS: Nine healthy volunteers were scanned by seven operators, using the Clarity(¼) system (Elekta, Stockholm, Sweden). In total, 72 scans, 36 scans from the C-US and 36 scans from the A-US probes, were acquired. Two observers delineated the uterine structure, using the software-assisted segmentation in the Clarity workstation. The data of uterine volume, uterine centre of mass (COM) and maximum uterine lengths, in three orthogonal directions, were analyzed. RESULTS: In 53% of the C-US scans, the whole uterus was captured, compared with 89% using the A-US. F-test on 36 scans demonstrated statistically significant differences in interobserver COM standard deviation (SD) when comparing the C-US with the A-US probe for the inferior–superior (p < 0.006), left–right (p < 0.012) and anteroposterior directions (p < 0.001). The median of the interobserver COM distance (Euclidean distance for 36 scans) was reduced from 8.5 (C-US) to 6.0 mm (A-US). An F-test on the 36 scans showed strong significant differences (p < 0.001) in the SD of the Euclidean interobserver distance when comparing the C-US with the A-US scans. The average Dice coefficient when comparing the two observers was 0.67 (C-US) and 0.75 (A-US). The predictive interval demonstrated better interobserver delineation concordance using the A-US probe. CONCLUSION: The A-US probe imaging might be a better choice of image-guided radiotherapy system for correcting for daily uterine positional changes in cervical radiotherapy. ADVANCES IN KNOWLEDGE: Using a novel A-US probe might reduce the uncertainty in interoperator variability during ultrasound scanning

    Kaon Electromagnetic Production on Nuclei

    Get PDF
    The formation and excitation of hypernuclei through kaon photoproduction is reviewed. Basic features of the production process are emphasized. The possibility of extracting new information on hypernuclear structure and on the wave function of the bound Λ\Lambda is discussed. New results are presented for the quasifree production process A(γ,KΛ)BA(\gamma, K \Lambda)B. Observables of this reaction are shown to be sensitive to the Λ\Lambda-nucleus final state interaction.Comment: 10 pages, 4 figures. Invited talk given at the International Conference on Hypernuclear and Strange Particle Physics (HYP97), Brookhaven National Laboratory, USA, October 13-18, 1997. To be published in Nucl. Phys.

    Observation of Motion Dependent Nonlinear Dispersion with Narrow Linewidth Atoms in an Optical Cavity

    Full text link
    As an alternative to state-of-the-art laser frequency stabilisation using ultra-stable cavities, it has been proposed to exploit the non-linear effects from coupling of atoms with a narrow transition to an optical cavity. Here we have constructed such a system and observed non-linear phase shifts of a narrow optical line by strong coupling of a sample of strontium-88 atoms to an optical cavity. The sample temperature of a few mK provides a domain where the Doppler energy scale is several orders of magnitude larger than the narrow linewidth of the optical transition. This makes the system sensitive to velocity dependent multi-photon scattering events (Dopplerons) that affect the cavity field transmission and phase. By varying the number of atoms and the intra-cavity power we systematically study this non-linear phase signature which displays roughly the same features as for much lower temperature samples. This demonstration in a relatively simple system opens new possibilities for alternative routes to laser stabilization at the sub 100 mHz level and superradiant laser sources involving narrow line atoms. The understanding of relevant motional effects obtained here has direct implications for other atomic clocks when used in relation with ultranarrow clock transitions.Comment: 9 pages (including 4 pages of Supplemental Information), 6 figures. Updated to correspond to the published versio

    Kinematics and Metallicity of M31 Red Giants: The Giant Southern Stream and Discovery of a Second Cold Component at R = 20 kpc

    Full text link
    We present spectroscopic observations of red giant branch (RGB) stars in the Andromeda spiral galaxy (M31), acquired with the DEIMOS instrument on the Keck II 10-m telescope. The three fields targeted in this study are in the M31 spheroid, outer disk, and giant southern stream. In this paper, we focus on the kinematics and chemical composition of RGB stars in the stream field located at a projected distance of R = 20 kpc from M31's center. A mix of stellar populations is found in this field. M31 RGB stars are isolated from Milky Way dwarf star contaminants using a variety of spectral and photometric diagnostics. The radial velocity distribution of RGB stars displays a clear bimodality -- a primary peak centered at v = -513 km/s and a secondary one at v = -417 km/s -- along with an underlying broad component that is presumably representative of the smooth spheroid of M31. Both peaks are found to be dynamically cold with intrinsic velocity dispersions of sigma(v) = 16 km/s. The mean metallicity and metallicity dispersion of stars in the two peaks is also found to be similar: [Fe/H] = -0.45 and sigma([Fe/H]) = 0.2. The observed velocity of the primary peak is consistent with that predicted by dynamical models for the stream, but there is no obvious explanation for the secondary peak. The nature of the secondary cold population is unclear: it may represent: (1) tidal debris from a satellite merger event that is superimposed on, but unrelated to, the giant southern stream; (2) a wrapped around component of the giant southern stream; (3) a warp or overdensity in M31's disk at R > 50 kpc (this component is well above the outward extrapolation of the smooth exponential disk brightness profile).Comment: 32 pages, 13 figures, 1 table. Accepted for publication in Ap

    Multiple generations of antibiotic exposure and isolation influence host fitness and the microbiome in a model zooplankton species

    Get PDF
    Background Chronic antibiotic exposure impacts host health through changes to the microbiome, increasing disease risk and reducing the functional repertoire of community members. The detrimental effects of antibiotic perturbation on microbiome structure and function after one host generation of exposure have been well-studied. However, much less is understood about the multigenerational effects of antibiotic exposure and how the microbiome may recover across host generations. Results In this study, we examined microbiome composition and host fitness across five generations of exposure to a suite of three antibiotics in the model zooplankton host Daphnia magna. By utilizing a split-brood design where half of the offspring from antibiotic-exposed parents were allowed to recover and half were maintained in antibiotics, we aimed to examine recovery and resilience of the microbiome. Unexpectedly, we discovered that experimental isolation of single host individuals across generations also exerted a strong effect on microbiome composition, with composition becoming less diverse over generations regardless of treatment. Simultaneously, Daphnia magna body size and cumulative reproduction increased across generations while survival decreased. Though antibiotics did cause substantial changes to microbiome composition, the microbiome generally became similar to the no antibiotic control treatment within one generation of recovery no matter how many prior generations were spent in antibiotics. Conclusions Contrary to results found in vertebrate systems, Daphnia magna microbiome composition recovers quickly after antibiotic exposure. However, our results suggest that the isolation of individual hosts leads to the stochastic extinction of rare taxa in the microbiome, indicating that these taxa are likely maintained via transmission in host populations rather than intrinsic mechanisms. This may explain the intriguing result that microbiome diversity loss increased host fitness

    High Aldehyde Dehydrogenase Activity Identifies a Subset of Human Mesenchymal Stromal Cells with Vascular Regenerative Potential

    Get PDF
    During culture expansion, multipotent mesenchymal stromal cells (MSCs) differentially express aldehyde dehydrogenase (ALDH), an intracellular detoxification enzyme that protects long-lived cells against oxidative stress. Thus, MSC selection based on ALDH-activity may be used to reduce heterogeneity and distinguish MSC subsets with improved regenerative potency. After expansion of human bone marrow-derived MSCs, cell progeny was purified based on low versus high ALDH-activity (ALDHhi) by fluorescence-activated cell sorting, and each subset was compared for multipotent stromal and provascular regenerative functions. Both ALDHl° and ALDHhi MSC subsets demonstrated similar expression of stromal cell (\u3e95% CD73+, CD90+, CD105+) and pericyte (\u3e95% CD146+) surface markers and showed multipotent differentiation into bone, cartilage, and adipose cells in vitro. Conditioned media (CDM) generated by ALDHhi MSCs demonstrated a potent proliferative and prosurvival effect on human microvascular endothelial cells (HMVECs) under serum-free conditions and augmented HMVEC tube-forming capacity in growth factor-reduced matrices. After subcutaneous transplantation within directed in vivo angiogenesis assay implants into immunodeficient mice, ALDHhi MSC or CDM produced by ALDHhi MSC significantly augmented murine vascular cell recruitment and perfused vessel infiltration compared with ALDHl° MSC. Although both subsets demonstrated strikingly similar mRNA expression patterns, quantitative proteomic analyses performed on subset-specific CDM revealed the ALDHhi MSC subset uniquely secreted multiple proangiogenic cytokines (vascular endothelial growth factor beta, platelet derived growth factor alpha, and angiogenin) and actively produced multiple factors with chemoattractant (transforming growth factor-ÎČ, C-X-C motif chemokine ligand 1, 2, and 3 (GRO), C-C motif chemokine ligand 5 (RANTES), monocyte chemotactic protein 1 (MCP-1), interleukin [IL]-6, IL-8) and matrix-modifying functions (tissue inhibitor of metalloprotinase 1 & 2 (TIMP1/2)). Collectively, MSCs selected for ALDHhi demonstrated enhanced proangiogenic secretory functions and represent a purified MSC subset amenable for vascular regenerative applications. Stem Cells 2017;35:1542–1553
    • 

    corecore