7 research outputs found

    EFFICIENT RELIABILITY AND UNCERTAINTY ASSESSMENT ON LIFELINE NETWORKS USING THE SURVIVAL SIGNATURE

    Get PDF
    Lifeline networks, such as water distribution and transportation networks, are the backbone of our societies, and the study of their reliability of them is required. In this paper, a survival signature-based reliability analysis method is proposed to analyse the complex networks. It allows to consider all the characters of the network instead of just analysing the most critical path. What is more, the survival signature separates the system structure from its failure distributions, and it only needs to be calculated once, which makes it efficient to analyse complex networks. However, due to lack of data, there often exists imprecision within the network failure time distribution parameters and hence the survival signature. An efficient algorithm which bases on the reduced ordered binary decision diagrams (BDD) data structure for the computation of survival signatures is presented. Numerical example shows the applicability of the approaches

    Introduction to imprecise probabilities

    No full text
    In recent years, the theory has become widely accepted and has been further developed, but a detailed introduction is needed in order to make the material available and accessible to a wide audience. This will be the first book providing such an introduction, covering core theory and recent developments which can be applied to many application areas. All authors of individual chapters are leading researchers on the specific topics, assuring high quality and up-to-date contents. An Introduction to Imprecise Probabilities provides a comprehensive introduction to imprecise probabilities, includi

    MRI-based assessment of liver perfusion and hepatocyte injury in the murine model of acute hepatitis

    Get PDF
    Objective: To assess alterations in perfusion and liver function in the concanavalin A (ConA)-induced mouse model of acute liver failure (ALF) using two magnetic resonance imaging (MRI)-based methods: dynamic contrast-enhanced MRI (DCE-MRI) with Gd-EOB-DTPA contrast agent and arterial spin labelling (ASL). Materials and methods: BALB/c mice were studied using a 9.4 T MRI system. The IntraGateFLASHTM and FAIR-EPI pulse sequences were used for optimum mouse abdomen imaging. Results: The average perfusion values for the liver of the control and ConA group were equal to 245 ± 20 and 200 ± 32 ml/min/100 g (p = 0.008, respectively). DCE-MRI showed that the time to the peak of the image enhancement was 6.14 ± 1.07 min and 9.72 ± 1.69 min in the control and ConA group (p < 0.001, respectively), while the rate of the contrast wash-out in the control and ConA group was 0.037 ± 0.008 and 0.021 ± 0.008 min−1 (p = 0.004, respectively). These results were consistent with hepatocyte injury in the ConA-treated mice as confirmed by histopathological staining. Conclusions: Both the ASL and DCE-MRI techniques represent a reliable methodology to assess alterations in liver perfusion and hepatocyte integrity in murine hepatitis
    corecore