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Abstract:  

In our developed societies, engineering systems are characterized by a rapid growth in scale and complexity. The 

amount of information needed to model these systems with their complexity is, thus, growing as well. In contrast 

to this increasing need for information the available information remains almost at the same level. Hence, with 

increasing scale and complexity the gap between required and available information is growing quickly, so that 

uncertainties and risks are involved in our models and analyses to a greater extent than ever before. We address 

this challenge with concepts of imprecise probabilities for reliability assessment of engineering systems when 

only limited information is available. In order to achieve high numerical efficiency, in particular when dealing 

with large complex systems, the concept of survival signature is adopted for the reliability assessment. Based on 

the developments of a survival analysis and importance analysis of systems with multiple types of components 

from it is shown how imprecise probabilities help to reveal the most critical components of the system and the 

most critical uncertainties, as well. Conclusions on a targeted reduction of imprecision are drawn. 
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1. Imprecise probabilities for generalized uncertainty modeling 
 

Since our engineering systems are, to a significant extent, critical for the functionality of our economic and 

societal life, they require proper approaches and measures to verify and ensure their reliable performance. 

Reliability and performance analysis become increasingly complicated due to the growing uncertainties through 

complexity. The realistic quantification of uncertainties and their numerically efficient processing in complex 

analyses are, thus, the two key challenges in this context.  

The uncertainty that is induced by limited and vague information represents epistemic uncertainty. 

Advancements in generalized uncertainty modeling are made to enable the quantification of epistemic 

uncertainties in form of an optimum compromise solution in the balance between three goals: (i) the complete 

representation of available information in the theoretical uncertainty model, (ii) the modeling without 

assumptions, which cannot be justified and potentially introduce artificial information, and (iii) the most 

appropriate modeling in view of the purpose of the analysis in order to provide the best possible basis for 

informed decisions. Clearly, the first consideration should be devoted to probabilistic modeling, naturally 

through subjective probabilities, which express a belief of the expert and can be integrated into a fully 

probabilistic framework in a coherent manner via a Bayesian approach. While this pathway is widely accepted 

and recognized as being very powerful, the potential of set-theoretical approaches and imprecise probabilities 

has only been utilized to some limited extent. Those approaches, however, attract increasing attention in cases 

when available information is not rich enough to specify subjective probability distributions [2]. Imprecise 

probabilities provide a significantly increased model flexibility through a combination of set-theoretical models 

with probabilistic models and keep the nature of the available information consistent throughout the entire 

analysis.  

The conceptual basis for imprecise probabilities is to distinguish between probabilistic subjectivity and 

imprecision as different forms of epistemic uncertainty, which provides a pragmatic criterion for classifying non-
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deterministic phenomena according to the nature of information. From this perspective, aleatory uncertainty 

(stochastic variation) and the subjective probabilistic form of epistemic uncertainty can be summarized as 

probabilistic uncertainty, whereas imprecision refers to the non-probabilistic form of epistemic uncertainty. This 

classification helps to avoid confusion if uncertainty appears as both probabilistic and non-probabilistic 

phenomena simultaneously in an analysis. An illustrative example for this situation is a random sample of 

imprecise perceptions (e.g., intervals due to limited measurement accuracy) of a physical quantity. While the 

scatter of the realizations of the physical quantity possesses a probabilistic character (frequentist or subjective), 

each particular realization from the population exhibits, additionally, imprecision with a non-probabilistic 

character. If an analysis involves this type of hybrid information, it is imperative to consider imprecision and 

probabilistic uncertainty simultaneously but not to mix the characteristics, so that imprecision is not described in 

terms of a probabilistic model and vice versa. 

A mathematical framework for an analysis of this type has been established with imprecise probabilities. A key 

feature of imprecise probabilities is the identification of bounds on probabilities for events of interest; the 

uncertainty of an event is characterized with two values; a lower probability and an upper probability. The 

distance between the lower and upper probability bounds reflects the indeterminacy in model specifications 

expressed as imprecision of the models. This imprecision results from not introducing artificial model 

assumptions. It is described by implementing set-valued descriptors in the specification of a probabilistic model. 

The model description is thereby limited to an appropriate domain, and no further specific characteristics are 

ascribed. This introduces significantly less information in comparison with a specific subjective distribution 

function as used in a Bayesian approach. Imprecision in the model description expressed in a set-theoretical form 

is not translated into probabilities; it is not described in terms of probabilities, instead, it is reflected in the result 

as a set of probabilities which covers all plausible cases of model assumptions. This feature is particularly 

important when the calculated probabilities provide the basis for critical decisions. With imprecise probabilities 

the analysis may be performed with various relevant models to obtain a set of relevant results and associated 

decisions. This helps to avoid wrong decisions due to artificial restrictions in modeling. 

The most straightforward approach to set up an imprecise probabilistic model is to identify respective set-valued 

distribution parameters. But the capabilities of the modeling are not limited to this approach. Imprecise 

probabilities are also capable of dealing with imprecise conditions, with imprecise dependencies between 

random variables, and with imprecise structural parameters and model descriptions [5, 6]. Further, multivariate 

models and statistical estimations and tests with imprecise sample elements can be constructed, results from 

robust statistics in the form of solution domains of statistical estimators can be considered directly. Recent 

overviews on imprecise probabilities with applications in engineering are provided in [2] and [1]. Subsequently, 

we use imprecise probabilities for reliability assessment of engineering systems when only limited information is 

available. 

 

2. System reliability analysis 
 

In order to address the issue of numerical efficiency, in particular when dealing with large complex systems, the 

concept of survival signature [3] is adopted for the reliability assessment. Suppose there is a system with m 

components. Let the state vector of the components be  x = (x1 , x2, ⋯, xm ) ∈ {0, 1}m
 with xi  =1 if the i th

 

component is in working state and  xi  = 0 if not. ∅ = ∅(x) ∶  {0,1}m → {0,1}  defines the system structure 

function, i.e., the system status based on all possible x. ∅ is 1 if the system is in a functional condition for state 

vector x and 0 if not. Now consider a system with K ≥ 2 types of m components, with mk indicating the number 

of components of each type and ∑ mk
K
k=1 = m. It is assumed that the failure times of the same component type 

are independently and identically distributed, or exchangeable. The survival signature becomes ∅(𝑙1, 𝑙2, … , 𝑙𝑘), 

with 𝑙𝑘 = 0,1, … , 𝑚𝑘 for 𝑘 = 1,2, … , 𝐾. There are (mk
lk

) state vectors xk with precisely lk components xi
k equal to 

1, so with ∑ xi
km

i=1 = lk. Let Sl1,l2,…,lK
 denote the set of all state vectors for the whole system for which ∑ xi

kmk
i=1 =

lk , k = 1,2, … , K . Assume that the random failure times of components of the different types are fully 

independent, and in addition the components are exchangeable within the group of components of the same type. 

The survival signature can then be written as: 

∅(𝑙1, … , 𝑙𝑘) = [∏ (𝑚𝑘
𝑙𝑘

)
−1

𝐾
𝑘=1 ] × ∑ ∅(𝑥)𝑥∈𝑆𝑙1,…,𝑙𝑘

 .    (1) 
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Ck(t) ∈ {0,1, … , mk} denotes the number of k components working at time t. Assume that the components of the 

same type have a known CDF, Fk(t) for type k. Moreover, the failure times of different component types are 

assumed as independent of one another. Hence 

P(⋂ {Ck(t) = lk}K
k=1 ) = ∏ P(Ck(t) = lk)K

k=1 = ∏ (mk

lk
) [Fk(t)]mk−lk[1 − Fk(t)]lkK

k=1 ,              (2) 

and the survival function of the system with K types of components becomes 

𝑃(𝑇𝑠 > 𝑡) = ∑ …
𝑚1
𝑙1=0 ∑ ∅(𝑙1, … , 𝑙𝐾)𝑃(⋂ {𝐶𝑘(𝑡) = 𝑙𝑘}𝐾

𝑘=1 )
𝑚𝑘
𝑙𝑘=0 .    (3) 

The structure of Eq. (3) shows a separation of the structure of the system from the failure time distribution of its 

components, which facilitates a very efficient analysis. The survival signature needs to be calculated only once 

for the entire analysis. 

On this basis the reliability of a system can be analysed via Monte Carlo simulation in a very efficient manner. 

The survival signature yields the probability that the system is in functional condition knowing the number of 

components for each type (i.e. 𝑙1, 𝑙2, …, 𝑙𝑘) that are working. This system is equivalent to a system with k 

components that can be in as many states as components of the respective component type exist. Therefore, the 

survival signature can be interpreted as the “production capability”' of the system. The simulation can then be 

performed based on the concept proposed in [7]. The key steps of the simulation are: 

1) sample the transition times of the first component type, hence a sequence of transition times 𝑡1, 𝑡2, … are 

obtained 

2) repeat the procedure of step 1 for the next component types, one by one, which will yield further sequences of 

additional transition times 

3) reorder all the transition times of (t1, t2, …). 

4) compute the probability that the system functions for each time interval by evaluating the survival signature 

5) repeat steps 1 to 4 for n system histories and average the obtained results 

In the result the probability of system survival over the time t is obtained. 

 

3. Reliability assessment with imprecise information 
 

A major challenge for reliability assessment of complex systems is the specification of the probabilistic models 

for the characterization of the system performance. The concept of imprecise probabilities enables a 

comprehensive and realistic mathematical modelling of vagueness, indeterminacy and imprecision when 

specifying these probabilistic models and a translation thereof into the results of the reliability analysis. 

Specifically, component parameters and parameters of probabilistic models for component performance can be 

described in form of value ranges with lower and upper bounds. This leads to associated value ranges with lower 

and upper bounds for the survival function of the system. This approach is demonstrated on the example system 

in Fig. 1. 

 
Figure 1. System with two types of components. 

 

The component failure times are described with a Weibull distribution for component type 1 and with a Gamma 

distribution for component type 2. The distribution parameters are modelled as intervals, whereby the size of the 

intervals reflects the magnitude of missing information, see Table 1. 

 

Table 1. Distribution parameters for system components with imprecision. 

Component Type Distribution Type Parameters (𝛼, 𝛽) 

1 Weibull ([1.2,1.8], [2.3,2.9]) 

2 Gamma ([0.8,1.6], [1.3,2.1]) 
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The Monte Carlo simulation to obtain the survival function of the system has now to capture an entire set of 

probabilistic problem descriptions. Out of the set of survival functions associated with this set of probabilistic 

problem descriptions only the bounding functions are of interest since these represent the best case and worst 

case results, in terms of probabilities, important for decision making. In addition, knowing the bounding 

functions, the range between these functions provides information about sensitivities of the system performance 

with respect to the magnitude of imprecision in the problem set up. For the numerical analysis it is thus sufficient 

to identify the bounding survival functions, which is realized by solving an optimization over the domain of the 

imprecise parameters. For the example system this leads to the bounding survival functions in Fig. 2. 

 
Figure 2. Lower and upper bounds of the survival function for the system in Fig. 1. 

 

4. Conclusions 
 

The concept of survival signature is a practical method for efficient and transparent reliability analysis of 

complex systems with multiple component types. It can be combined in a straight-forward manner with 

stochastic simulation approaches, which supports its general applicability. The efficiency of the approach is 

based on the feature that the system model needs to be analysed only once in the entire analysis, specifically to 

obtain the survival signature. An expansion to take into account limited and vague information has been 

achieved with the aid of imprecise probabilities. This allows to analyse problems characterised by both epistemic 

and aleatory uncertainties in one go. In conjunction with the developments of a survival analysis and importance 

analysis of systems with multiple types of components from [4] it is possible to utilize imprecise probabilities to 

reveal the most critical components of the system and the most critical uncertainties, as well. On this basis 

conclusions on a targeted reduction of imprecision can be drawn. 
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