14 research outputs found

    Mapa de Favorabilidad Geotérmica Aplicando el Método de Análisis Geothermal Play Fairway Área I, Puna Norte, Argentina

    Get PDF
    Fil: Asato, G. Servicio Geológico Minero Argentino. Instituto de Geología y Recursos Minerales; Argentina. ORCID: 0000-0002-1968-7741Fil: Seggiaro, R. Servicio Geológico Minero Argentino. Delegación Salta; Argentina.Fil: Conde Serra, A. Servicio Geológico Minero Argentino. Instituto de Geología y Recursos Minerales; Argentina.Fil: Carrizo, N. Servicio Geológico Minero Argentino. Delegación Catamarca; Argentina.Fil: Larcher, N. Servicio Geológico Minero Argentino; Argentina.Fil: Azcurra, D. Servicio Geológico Minero Argentino; Argentina.Fil: Castro Godoy, S. Servicio Geológico Minero Argentino; Argentina.Fil: Carballo, F. Servicio Geológico Minero Argentino; Argentina.Fil: Marquetti, C. Servicio Geológico Minero Argentino. Instituto de Geología y Recursos Minerales; Argentina.Fil: Naón, V. Servicio Geológico Minero Argentino. Instituto de Geología y Recursos Minerales; Argentina.Fil: Lindsey, C. Universidad de Nevada. Nevada Bureau of Mines and Geology. Great Basin Center for Geothermal Energy (GBCGE); Estados Unidos de América.Fil: Ayling, B. Universidad de Nevada. Nevada Bureau of Mines and Geology. Great Basin Center for Geothermal Energy (GBCGE); Estados Unidos de América.Fil: Faulds, J. Universidad de Nevada. Nevada Bureau of Mines and Geology. Great Basin Center for Geothermal Energy (GBCGE); Estados Unidos de América.Fil: Coolbaugh, M. Universidad de Nevada. Nevada Bureau of Mines and Geology. Great Basin Center for Geothermal Energy (GBCGE); Estados Unidos de América.Como resultado del acuerdo firmado entre el Great Basin Center of Geothermal Energy (GBCGE) y el Servicio Geológico Minero Argentino (SEGEMAR) se inició un nuevo proyecto cuyo objetivo fue el descubrimiento de recursos geotérmicos ocultos o ciegos en una porción de la Puna (NOA). Para el cumplimiento de este objetivo la metodología Geothermal Play Fairway, diseñada por el GBCGE, fue implementada en la región seleccionada con el propósito de detectar zonas de favorabilidad geotérmica de alta entalpía dentro del área de estudio. Esta metodología consiste en la superposición de mapas de evidencias, según la metodología adoptada, de manera tal que cada punto del mapa resultante obtiene un puntaje otorgado por la cantidad y calidad de las evidencias de sistemas geotermales asociadas a dicho punto. Se recolectó, analizó y procesó información tanto de evidencias directas como indirectas de la existencia de Fluidos, Flujo calórico y Permeabilidad (principales componentes de un sistema geotermal) para producir mapas ponderados de cada uno de estos subsistemas. Luego se combinaron los mapas resultantes para crear un Mapa de Favorabilidad Geotérmica de la región de estudio. La eficacia del método se verificó después de reconocer cuatro sitios con recursos geotérmicos previamente conocidos. Los sistemas geotérmicos de Aguas Calientes Caldera, Incachule, Tocomar, Pompeya y Antuco (Zona A); Caldera de Coranzulí (Zona B); y Volcán Tuzgle (Zona D). Además, se detectaron otras ubicaciones potenciales con antecedentes no previos, como las áreas de Rosario de Coyaguaima y Pairique (Zona C). Y así mismo cabe agregar el sector que comprende el Salar de Rincón como área de interés. Es bien sabido que una mayor investigación y la incorporación de más datos podrían aumentar la posibilidad de descubrir nuevos sitios con potencial geotérmico. Este reporte presenta un resumen de la metodología empleada, la descripción de las evidencias consideradas y las razones de los pesos asignados a cada una de las evidencias. La intención no es sólo presentar los resultados obtenidos para el área de estudio, sino también generar una guía que permita al lector implementar la metodología Geothermal Play Fairway en otras regiones de Argentina

    Effect of Reduced Spatial Resolution on Mineral Mapping Using Imaging Spectrometry—Examples Using Hyperspectral Infrared Imager (HyspIRI)-Simulated Data

    Get PDF
    The Hyperspectral Infrared Imager (HyspIRI) is a proposed NASA satellite remote sensing system combining a visible to shortwave infrared (VSWIR) imaging spectrometer with over 200 spectral bands between 0.38 and 2.5 μm and an 8-band thermal infrared (TIR) multispectral imager, both at 60 m spatial resolution. Short Wave Infrared (SWIR) (2.0–2.5 μm) simulation results are described here using Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data in preparation for the future launch. The simulated data were used to assess the effect of the HyspIRI 60 m spatial resolution on the ability to identify and map minerals at hydrothermally altered and geothermal areas. Mineral maps produced using these data successfully detected and mapped a wide variety of characteristic minerals, including jarosite, alunite, kaolinite, dickite, muscovite-illite, montmorillonite, pyrophyllite, calcite, buddingtonite, and hydrothermal silica. Confusion matrix analysis of the datasets showed overall classification accuracy ranging from 70 to 92% for the 60 m HyspIRI simulated data relative to 15 m spatial resolution data. Classification accuracy was lower for similar minerals and smaller areas, which were not mapped well by the simulated 60 m HyspIRI data due to blending of similar signatures and spectral mixing with adjacent pixels. The simulations demonstrate that HyspIRI SWIR data, while somewhat limited by their relatively coarse spatial resolution, should still be useful for mapping hydrothermal/geothermal systems, and for many other geologic applications requiring mineral mapping

    A MATLAB toolbox for muscle diffusion-tensor MRI tractography

    No full text
    Diffusion-tensor MRI fiber tractography has been used to reconstruct skeletal muscle architecture, but remains a specialized technique using custom-written data processing routines. In this work, we describe the public release of a software toolbox having the following design objectives: accomplish the pre-processing tasks of file input, image registration, denoising, and diffusion-tensor calculation; allow muscle-specific methods for defining seed points; make fiber-tract architectural measurements referenced to tendinous structures; visualize fiber tracts and other muscle structures of interest; analyze the goodness of outcomes; and provide a programming structure that allows the addition of new capabilities in future versions. The proper function of the code was verified using simulated datasets. The toolbox capabilities for characterizing human muscle structure in vivo were demonstrated in a case study. These capabilities included measurements of muscle morphology; contractile and non-contractile tissue volumes; fiber-tract length, pennation angle, curvature; and the physiological cross-sectional area,. The free public release of this software is a first step in creating of a community of users who use these tools in studies of muscle physiology and biomechanics. Users may further contribute to code development. Along with simulated and actual datasets for benchmarking, these tools will further create mechanisms for enhancing scientific rigor and developing and validating new code features. Planned future developments include additional options for image pre-processing, development of a graphical user interface, analysis of architectural patterns during muscle contraction, and integration of functional imaging data

    Geothermal Site Assessment Using the National Geothermal Data System (NGDS), with Examples from the Hawthorne Ammunition Depot Area

    No full text
    The Nevada Bureau of Mines and Geology and Great Basin Center for Geothermal Energy have compiled nearly 50,000 Great Basin groundwater samples into an Access database, encompassing all known spatial, physical, and geochemical features. The database schema is a partial template for the National Geothermal Data System (NGDS), a DOE-sponsored compendium of geothermal data spanning all 50 states. The database can be queried to produce worksheets customized to user requirements, greatly simplifying data extraction for other software applications (e.g., GoogleEarth). This paper examines the features and functionality of the existing database, its integration into the 50-state NGDS, and its usage in geothermal exploration and development. In particular, we examine the dataset for Hawthorne, NV, which has been supplemented extensively by the Naval Geothermal Program Office and subcontractor Epsilon Systems Solutions, Inc. As we demonstrate, a database user can identify Hawthorne-area thermal anomalies several ways: through spatial interpolation of database geothermometry, temperature gradient calculations, and other geochemical signatures. The ratios of B/Cl, Li/Cl, and As/Cl may identify zones of geothermal potential, as can regional patterns of total dissolved solids, Na-K-Ca ternary diagrams, and trace element ternary diagrams
    corecore