70 research outputs found

    CXCR4 Inhibition Ameliorates Severe Obliterative Pulmonary Hypertension and Accumulation of C-Kit+ Cells in Rats

    Get PDF
    Successful curative treatment of severe pulmonary arterial hypertension with luminal obliteration will require a thorough understanding of the mechanism underlying the development and progression of pulmonary vascular lesions. But the cells that obliterate the pulmonary arterial lumen in severe pulmonary arterial hypertension are incompletely characterized. The goal of our study was to evaluate whether inhibition of CXC chemokine receptor 4 will prevent the accumulation of c-kit+ cells and severe pulmonary arterial hypertension. We detected c-kit+­ cells expressing endothelial (von Willebrand Factor) or smooth muscle cell/myofibroblast (α-smooth muscle actin) markers in pulmonary arterial lesions of SU5416/chronic hypoxia rats. We found increased expression of CXC chemokine ligand 12 in the lung tissue of SU5416/chronic hypoxia rats. In our prevention study, AMD3100, an inhibitor of the CXC chemokine ligand 12 receptor, CXC chemokine receptor 4, only moderately decreased pulmonary arterial obliteration and pulmonary hypertension in SU5416/chronic hypoxia animals. AMD3100 treatment reduced the number of proliferating c-kit+ α-smooth muscle actin+ cells and pulmonary arterial muscularization and did not affect c-kit+ von Willebrand Factor+ cell numbers. Both c-kit+ cell types expressed CXC chemokine receptor 4. In conclusion, our data demonstrate that in the SU5416/chronic hypoxia model of severe pulmonary hypertension, the CXC chemokine receptor 4-expressing c-kit+ α-smooth muscle actin+ cells contribute to pulmonary arterial muscularization. In contrast, vascular lumen obliteration by c-kit+ von Willebrand Factor+ cells is largely independent of CXC chemokine receptor 4

    Possible role of human herpesvirus 8 in the lymphoproliferative disorders in common variable immunodeficiency

    Get PDF
    Patients who have common variable immunodeficiency (CVID) and granulomatous/lymphocytic interstitial lung disease (GLILD) are at high risk for early mortality and B cell lymphomas. Infection with human herpes virus type 8 (HHV8), a B cell lymphotrophic virus, is linked to lymphoproliferative disorders in people who have secondary immunodeficiencies. Therefore, we determined the prevalence of HHV8 infection in CVID patients with GLILD. Genomic DNA isolated from peripheral blood mononuclear cells was screened by nested- and real time-quantitative PCR (QRT-PCR) for the presence of HHV8 genome. It was positive in 6/9 CVID patients with GLILD (CVID-GLILD), 1/21 CVID patients without GLILD (CVID-control), and no patients receiving intravenous gamma globulin (n = 13) or normal blood donors (n = 20). Immunohistochemistry (IHC) demonstrated expression of the latency-associated nuclear antigen-1 (LANA-1) in the biopsies of the lung, liver, and bone marrow of four patients with CVID-GLILD. One CVID-GLILD patient developed a B cell lymphoma during the course of the study. QRT-PCR demonstrated high copy number of HHV8 genome and IHC showed diffuse staining for LANA-1 in the malignant lymph node. HHV8 infection may be an important factor in the pathogenesis of the interstitial lung disease and lymphoproliferative disorders in patients with CVID

    Toll-like receptor 3 is a therapeutic target for pulmonary hypertension

    Get PDF
    RATIONALE: Pulmonary arterial hypertension (PAH) is characterized by vascular cell proliferation and endothelial cell apoptosis. Toll-like receptor 3 (TLR3) is a receptor for double-stranded RNA and has been recently implicated in vascular protection. OBJECTIVE: The goal was to study the expression and role of TLR3 in PAH and to determine whether a TLR3 agonist reduces Pulmonary Hypertension in preclinical models. METHODS: Lung tissue and endothelial cells from PAH patients were investigated by polymerase chain reaction, immunofluorescence and apoptosis assays. TLR3-/- and TLR3+/+ mice were exposed to chronic hypoxia and SU5416. Chronic hypoxia or chronic hypoxia/SU5416 rats were treated with the TLR3 agonist polyinosinic:polycytidylic acid [Poly(I:C)]. MEASUREMENTS AND MAIN RESULTS: TLR3 expression was reduced in PAH patient lung tissue and endothelial cells, and TLR3-/- mice exhibited more severe Pulmonary Hypertension following exposure to chronic hypoxia/SU5416. TLR3 knockdown promoted double-stranded RNA signaling via other intracellular RNA receptors in endothelial cells and this was associated with greater susceptibility to apoptosis, a known driver of pulmonary vascular remodeling. Poly(I:C) increased TLR3 expression via interleukin-10 in rat endothelial cells. In vivo, high dose Poly(I:C) reduced Pulmonary Hypertension in both rat models in proof-of-principle experiments. In addition, Poly(I:C) also reduced right ventricular failure in established Pulmonary Hypertension. CONCLUSIONS: Our work identifies a novel role for TLR3 in PAH based on the findings that reduced expression of TLR3 contributes to endothelial apoptosis and pulmonary vascular remodeling

    Murine Gammaherpesvirus 68 Infection of Gamma Interferon-Deficient Mice on a BALB/c Background Results in Acute Lethal Pneumonia That Is Dependent on Specific Viral Genesâ–¿

    No full text
    Gamma interferon (IFN-γ) is critical for the control of chronic infection with murine gammaherpesvirus 68 (γHV68). Current data indicate that IFN-γ has a lesser role in the control of acute replication of γHV68. Here, we show that IFN-γ-deficient mice on the BALB/c genetic background poorly control acute viral replication and succumb to early death by acute pneumonia. Notably, this acute, lethal pneumonia was dependent not only on the viral dose, but also on specific viral genes including the viral cyclin gene, previously identified to be important in promoting optimal chronic infection and reactivation from latency
    • …
    corecore