282 research outputs found

    Retromer-dependent lysosomal stress in Parkinson's disease

    Get PDF
    While causative mutations in complex disorders are rare, they can be used to extract a biological pathway whose pathogenicity can generalize to common forms of the disease. Here we begin by relying on the biological consequences of mutations in LRRK2 and VPS35, genetic causes of autosomal-dominant Parkinson's disease, to hypothesize that 'Retromer-dependent lysosomal stress' represents a pathway that can generalize to idiopathic Parkinson's disease. Next, we outline a series of studies that can test this hypothesis, including the development of biomarkers of pathway dysfunction. If validated, the hypothesis can suggest a unified mechanism of disease and might inform future diagnostic and therapeutic investigations. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.</p

    Hallmarks of neurodegenerative diseases

    Get PDF
    Decades of research have identified genetic factors and biochemical pathways involved in neurodegenerative diseases (NDDs). We present evidence for the following eight hallmarks of NDD: pathological protein aggregation, synaptic and neuronal network dysfunction, aberrant proteostasis, cytoskeletal abnormalities, altered energy homeostasis, DNA and RNA defects, inflammation, and neuronal cell death. We describe the hallmarks, their biomarkers, and their interactions as a framework to study NDDs using a holistic approach. The framework can serve as a basis for defining pathogenic mechanisms, categorizing different NDDs based on their primary hallmarks, stratifying patients within a specific NDD, and designing multi-targeted, personalized therapies to effectively halt NDDs

    Metabolomic Profiling in LRRK2-Related Parkinson's Disease

    Get PDF
    Mutations in LRRK2 gene represent the most common known genetic cause of Parkinson's disease (PD).We used metabolomic profiling to identify biomarkers that are associated with idiopathic and LRRK2 PD. We compared plasma metabolomic profiles of patients with PD due to the G2019S LRRK2 mutation, to asymptomatic family members of these patients either with or without G2019S LRRK2 mutations, and to patients with idiopathic PD, as well as non-related control subjects. We found that metabolomic profiles of both idiopathic PD and LRRK2 PD subjects were clearly separated from controls. LRRK2 PD patients had metabolomic profiles distinguishable from those with idiopathic PD, and the profiles could predict whether the PD was secondary to LRRK2 mutations or idiopathic. Metabolomic profiles of LRRK2 PD patients were well separated from their family members, but there was a slight overlap between family members with and without LRRK2 mutations. Both LRRK2 and idiopathic PD patients showed significantly reduced uric acid levels. We also found a significant decrease in levels of hypoxanthine and in the ratios of major metabolites of the purine pathway in plasma of PD patients.These findings show that LRRK2 patients with the G2019S mutation have unique metabolomic profiles that distinguish them from patients with idiopathic PD. Furthermore, asymptomatic LRRK2 carriers can be separated from gene negative family members, which raises the possibility that metabolomic profiles could be useful in predicting which LRRK2 carriers will eventually develop PD. The results also suggest that there are aberrations in the purine pathway in PD which may occur upstream from uric acid

    Parkinson's disease-associated mutations in the GTPase domain of LRRK2 impair its nucleotide-dependent conformational dynamics

    Get PDF
    Mutation in leucine-rich repeat kinase 2 (LRRK2) is a common cause of familial Parkinson's disease (PD). Recently, we showed that a disease-associated mutation R1441H rendered the GTPase domain of LRRK2 catalytically less active and thereby trapping it in a more persistently “on” conformation. However, the mechanism involved and characteristics of this on conformation remained unknown. Here, we report that the Ras of complex protein (ROC) domain of LRRK2 exists in a dynamic dimer–monomer equilibrium that is oppositely driven by GDP and GTP binding. We also observed that the PD-associated mutations at residue 1441 impair this dynamic and shift the conformation of ROC to a GTP-bound–like monomeric conformation. Moreover, we show that residue Arg-1441 is critical for regulating the conformational dynamics of ROC. In summary, our results reveal that the PD-associated substitutions at Arg-1441 of LRRK2 alter monomer–dimer dynamics and thereby trap its GTPase domain in an activated state

    Endogenous production of IL-1B by breast cancer cells drives metastasis and colonisation of the bone microenvironment

    Get PDF
    Background: Breast cancer bone metastases are incurable highlighting the need for new therapeutic targets. After colonizing bone, breast cancer cells remain dormant, until signals from the microenvironment stimulate outgrowth into overt metastases. Here we show that endogenous production of IL-1B by tumor cells drives metastasis and growth in bone. Methods: Tumor/stromal IL-B and IL-1R1 expression was assessed in patient samples and effects of the IL-1R antagonist, Anakinra or the IL-1B antibody Canakinumab on tumor growth and spontaneous metastasis were measured in a humanized mouse model of breast cancer bone metastasis. Effects of tumor cell-derived IL-1B on bone colonisation and parameters associated with metastasis were measured in MDA-MB-231, MCF7 and T47D cells transfected with IL-1B/control. Results: In tissue samples from >1300 patients with stage II/III breast cancer, IL-1B in tumor cells correlated with relapse in bone (hazard ratio 1.85; 95% CI 1.05-3.26; P=0.02) and other sites (hazard ratio 2.09; 95% CI 1.26-3.48; P=0.0016). In a humanized model of spontaneous breast cancer metastasis to bone, Anakinra or Canakinumab reduced metastasis and reduced the number of tumor cells shed into the circulation. Production of IL-1B by tumor cells promoted EMT (altered E-Cadherin, N-Cadherin and G-Catenin), invasion, migration and bone colonisation. Contact between tumor and osteoblasts or bone marrow cells increased IL-1B secretion from all three cell types. IL-1B alone did not stimulate tumor cell proliferation. Instead, IL-1B caused expansion of the bone metastatic niche leading to tumor proliferation. Conclusion: Pharmacological inhibition of IL-1B has potential as a novel treatment for breast cancer metastasis

    A revised 1.6 Å structure of the GTPase domain of the Parkinson’s disease-associated protein LRRK2 provides insights into mechanisms

    Get PDF
    Leucine-rich repeat kinase 2 (LRRK2) is a large 286 kDa multi-domain protein whose mutation is a common cause of Parkinson’s disease (PD). One of the common sites of familial PD-associated mutations occurs at residue Arg-1441 in the GTPase domain of LRRK2. Previously, we reported that the PD-associated mutation R1441H impairs the catalytic activity of the GTPase domain thereby traps it in a persistently "on" state. More recently, we reported that the GTPase domain of LRRK2 exists in a dynamic dimer-monomer equilibrium where GTP binding shifts it to the monomeric conformation while GDP binding shifts it back to the dimeric state. We also reported that all of the PD-associated mutations at Arg-1441, including R1441H, R1441C, and R1441G, impair the nucleotide-dependent dimer-monomer conformational dynamics of the GTPase domain. However, the mechanism of this nucleotide-dependent conformational dynamics and how it is impaired by the mutations at residue Arg-1441 remained unclear. Here, we report a 1.6 Å crystal structure of the GTPase domain of LRRK2. Our structure has revealed a dynamic switch region that can be differentially regulated by GTP and GDP binding. This nucleotide-dependent regulation is impaired when residue Arg-1441 is substituted with the PD-associated mutations due to the loss of its exquisite interactions consisting of two hydrogen bonds and a π-stacking interaction at the dimer interface

    A Dual-Color Fluorescence-Based Platform to Identify Selective Inhibitors of Akt Signaling

    Get PDF
    Background: Inhibition of Akt signaling is considered one of the most promising therapeutic strategies for many cancers. However, rational target-orientated approaches to cell based drug screens for anti-cancer agents have historically been compromised by the notorious absence of suitable control cells. Methodology/Principal Findings: In order to address this fundamental problem, we have developed BaFiso, a live-cell screening platform to identify specific inhibitors of this pathway. BaFiso relies on the co-culture of isogenic cell lines that have been engineered to sustain interleukin-3 independent survival of the parental Ba/F3 cells, and that are individually tagged with different fluorescent proteins. Whilst in the first of these two lines cell survival in the absence of IL-3 is dependent on the expression of activated Akt, the cells expressing constitutively-activated Stat5 signaling display IL-3 independent growth and survival in an Akt-independent manner. Small molecules can then be screened in these lines to identify inhibitors that rescue IL-3 dependence. Conclusions/Significance: BaFiso measures differential cell survival using multiparametric live cell imaging and permits selective inhibitors of Akt signaling to be identified. BaFiso is a platform technology suitable for the identification of smal

    Targeting and Function of the Mitochondrial Fission Factor GDAP1 Are Dependent on Its Tail-Anchor

    Get PDF
    Proteins controlling mitochondrial dynamics are often targeted to and anchored into the mitochondrial outer membrane (MOM) by their carboxyl-terminal tail-anchor domain (TA). However, it is not known whether the TA modulates protein function. GDAP1 is a mitochondrial fission factor with two neighboring hydrophobic domains each flanked by basic amino acids (aa). Here we define GDAP1 as TA MOM protein. GDAP1 carries a single transmembrane domain (TMD) that is, together with the adjacent basic aa, critical for MOM targeting. The flanking N-terminal region containing the other hydrophobic domain is located in the cytoplasm. TMD sequence, length, and high hydrophobicity do not influence GDAP1 fission function if MOM targeting is maintained. The basic aa bordering the TMD in the cytoplasm, however, are required for both targeting of GDAP1 as part of the TA and GDAP1-mediated fission. Thus, this GDAP1 region contains critical overlapping motifs defining intracellular targeting by the TA concomitant with functional aspects

    Deletion at ITPR1 Underlies Ataxia in Mice and Spinocerebellar Ataxia 15 in Humans

    Get PDF
    We observed a severe autosomal recessive movement disorder in mice used within our laboratory. We pursued a series of experiments to define the genetic lesion underlying this disorder and to identify a cognate disease in humans with mutation at the same locus. Through linkage and sequence analysis we show here that this disorder is caused by a homozygous in-frame 18-bp deletion in Itpr1 (Itpr1Δ18/Δ18), encoding inositol 1,4,5-triphosphate receptor 1. A previously reported spontaneous Itpr1 mutation in mice causes a phenotype identical to that observed here. In both models in-frame deletion within Itpr1 leads to a decrease in the normally high level of Itpr1 expression in cerebellar Purkinje cells. Spinocerebellar ataxia 15 (SCA15), a human autosomal dominant disorder, maps to the genomic region containing ITPR1; however, to date no causal mutations had been identified. Because ataxia is a prominent feature in Itpr1 mutant mice, we performed a series of experiments to test the hypothesis that mutation at ITPR1 may be the cause of SCA15. We show here that heterozygous deletion of the 5′ part of the ITPR1 gene, encompassing exons 1–10, 1–40, and 1–44 in three studied families, underlies SCA15 in humans

    Cell-Specific Monitoring of Protein Synthesis In Vivo

    Get PDF
    Analysis of general and specific protein synthesis provides important information, relevant to cellular physiology and function. However, existing methodologies, involving metabolic labelling by incorporation of radioactive amino acids into nascent polypeptides, cannot be applied to monitor protein synthesis in specific cells or tissues, in live specimens. We have developed a novel approach for monitoring protein synthesis in specific cells or tissues, in vivo. Fluorescent reporter proteins such as GFP are expressed in specific cells and tissues of interest or throughout animals using appropriate promoters. Protein synthesis rates are assessed by following fluorescence recovery after partial photobleaching of the fluorophore at targeted sites. We evaluate the method by examining protein synthesis rates in diverse cell types of live, wild type or mRNA translation-defective Caenorhabditis elegans animals. Because it is non-invasive, our approach allows monitoring of protein synthesis in single cells or tissues with intrinsically different protein synthesis rates. Furthermore, it can be readily implemented in other organisms or cell culture systems
    corecore