2,416 research outputs found

    In situ chemichromic studies of interactions between a lutetium bis-octaalkyl-substituted phthalocyanine and selected biological cofactors

    Get PDF
    This article is available open access through the publisher’s website at the link below. Copyright @ 2011 The Royal Society.Spin-coated films, approximately 100 nm thick, of a newly synthesized bis[octakis(octyl)phthalocyaninato] lutetium(III) complex on ultrasonically cleaned glass substrates exhibit pronounced chemichromic behaviour with potential application in healthcare. In situ kinetic optical absorption spectroscopic measurements show that the phthalocyanine Q-band is red shifted by 60 nm upon oxidation arising from exposure to bromine vapour. Recovery to the original state is achieved by the treatment of the oxidized films with nicotinamide adenine dinucleotide and l-ascorbic acid (vitamin C) in an aqueous solution containing 1.5 M lithium perchlorate. The neutralization process is found to be governed by first-order kinetics. The linear increase of the reduction rate with increasing concentration of cofactors provides a basis for calibration of analyte concentrations ranging from 3.5 mM down to 0.03 mM.Air Force Office of Scientific Research, Air Force Material Command, USAF and the Leverhulme Trust

    A tetrabenzotriazaporphyrin based organic thin film transistor: Comparison with a device of the phthalocyanine analogue

    Get PDF
    The characteristics of bottom-gate bottom-contact organic thin film field-effect transistors (OTFTs) with 70 nm thick films of solution processed non-peripherally octahexyl-substituted nickel tetrabenzo triazaporphyrin (6NiTBTAP) molecules as active layers on silicon substrates are experimentally studied and the results are compared with the similary configured transistors using the corresponding nickel phthalocyanine (6NiPc) compound. 6NiTBTAP transistors are found to exhibit improved performance over 6NiPc transistors in terms of greater saturation hole mobility, two orders of magnitude higher on/off ratio and lower threshold voltage. This enhanced performance of 6NiTBTAP OTFTs over 6NiPc devices is attributed to improved surface morphology and large grain size of the active 6NiTBTAP film

    High-mobility solution-processed copper phthalocyanine-based organic field-effect transistors

    Get PDF
    © 2011 National Institute for Materials ScienceSolution-processed films of 1,4,8,11,15,18,22,25-octakis(hexyl) copper phthalocyanine (CuPc6) were utilized as an active semiconducting layer in the fabrication of organic field-effect transistors (OFETs) in the bottom-gate configurations using chemical vapour deposited silicon dioxide (SiO2) as gate dielectrics. The surface treatment of the gate dielectric with a self-assembled monolayer of octadecyltrichlorosilane (OTS) resulted in values of 4×10−2 cm2 V−1 s−1 and 106 for saturation mobility and on/off current ratio, respectively. This improvement was accompanied by a shift in the threshold voltage from 3V for untreated devices to −2V for OTS treated devices. The trap density at the interface between the gate dielectric and semiconductor decreased by about one order of magnitude after the surface treatment. The transistors with the OTS treated gate dielectrics were more stable over a 30-day period in air than untreated ones.Technology Strategy Board, UK (Project No: TP/6/EPH/6/S/K2536J)

    Charge transport in Lead Sulfide Quantum Dots/Phthalocyanines Hybrid Nanocomposites

    Get PDF
    © 2017 The Authors. A hybrid composite of non-aggregated lead sulfide (PbS) nanoparticles of average size 5.8±1 nm embedded within a film of an octaalkyl substituted metal-free phthalocyanine (Compound 2) was prepared on interdigitated gold electrodes by mild acidic treatment of newly synthesised octasubstituted lead phthalocyanine analogue (Compound 1) in solid state phase. This nanocomposite film shows an enhancement of in-plane electrical conductivity over that of a film of octaalkyl substituted metal-free phthalocyanine alone by nearly 65%. This observation is consistent with the formation of charge complex compound as indicated by Raman and XPS data. The presence of PbS in the composite was examined on the basis of XRD peak positions which are comparable with those of bulk PbS. A band gap of 2.22 eV was calculated from optical absorption data using Tauc’s law, implying quantum confinement. The mono dispersal behaviour of PbS nanoparticles was established from TEM and XRD studies. The hopping conduction mechanism is found to be primarily responsible for charge transport in the hybrid nanocomposite film with the hopping distance larger than PbS diameter.This work is sponsored by the Air Force Office of Scientific Research, Air Force Material Command, USAF, under Grant No. FA9550-15-1-0123

    Robotic ubiquitous cognitive ecology for smart homes

    Get PDF
    Robotic ecologies are networks of heterogeneous robotic devices pervasively embedded in everyday environments, where they cooperate to perform complex tasks. While their potential makes them increasingly popular, one fundamental problem is how to make them both autonomous and adaptive, so as to reduce the amount of preparation, pre-programming and human supervision that they require in real world applications. The project RUBICON develops learning solutions which yield cheaper, adaptive and efficient coordination of robotic ecologies. The approach we pursue builds upon a unique combination of methods from cognitive robotics, machine learning, planning and agent- based control, and wireless sensor networks. This paper illustrates the innovations advanced by RUBICON in each of these fronts before describing how the resulting techniques have been integrated and applied to a smart home scenario. The resulting system is able to provide useful services and pro-actively assist the users in their activities. RUBICON learns through an incremental and progressive approach driven by the feed- back received from its own activities and from the user, while also self-organizing the manner in which it uses available sensors, actuators and other functional components in the process. This paper summarises some of the lessons learned by adopting such an approach and outlines promising directions for future work

    Newly Synthesised Gadolinium bis-Phthalocyanine Sandwich Complex: Ambipolar Organic Semiconductor

    Get PDF
    This is an author-created, un-copyedited version of an article accepted for publication/published in Semiconductor Science and Technology. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://iopscience.iop.org/article/10.1088/1361-6641/aad42dTime of flight (TOF) photocurrent transient studies on 5µm thick solution processed films of novel non-peripherally octa-octyl-substituted liquid crystalline gadolinium bis1,4,8,11,15,18,22,25-octakis(octyl) phthalocyanines (8GdPc2) provide a quantitative analysis of the intrinsic ambipolar charge transport relative to mesomorphic structure of this lanthanide compound. Characteristic liquid crystalline phases of these molecules have been identified from differential scanning calorimetry supported by observation from the UVvisible absorption, showing crystal-columnar mesophase and columnar mesophase-isotropic liquid transitions at 64.2°C and 162°C, respectively. The TOF carrier mobility is found to be structure dependent and highest values of 4.73×10−6m2 /Vs and 1.6×10−6m2 /Vs have been estimated for hole and electron mobilities for hexagonally packed, columnar structures of the spin-coated films. These results are exploitable for development of single molecule based all organic complimentary analogue and digital circuits with tunable field effect performanc

    Population Selection and Sequencing of Caenorhabditis elegans Wild Isolates Identifies a Region on Chromosome III Affecting Starvation Resistance

    Get PDF
    To understand the genetic basis of complex traits, it is important to be able to efficiently phenotype many genetically distinct individuals. In the nematode Caenorhabditis elegans, individuals have been isolated from diverse populations around the globe and whole-genome sequenced. As a result, hundreds of wild strains with known genome sequences can be used for genome-wide association studies (GWAS). However, phenotypic analysis of these strains can be laborious, particularly for quantitative traits requiring multiple measurements per strain. Starvation resistance is likely a fitness-proximal trait for nematodes, and it is related to metabolic disease risk in humans. However, natural variation in C. elegans starvation resistance has not been systematically characterized, and precise measurement of the trait is time-intensive. Here, we developed a population-selection-and-sequencing-based approach to phenotype starvation resistance in a pool of 96 wild strains. We used restriction site-associated DNA sequencing (RAD-seq) to infer the frequency of each strain among survivors in a mixed culture over time during starvation. We used manual starvation survival assays to validate the trait data, confirming that strains that increased in frequency over time are starvation-resistant relative to strains that decreased in frequency. Further, we found that variation in starvation resistance is significantly associated with variation at a region on chromosome III. Using a near-isogenic line (NIL), we showed the importance of this genomic interval for starvation resistance. This study demonstrates the feasibility of using population selection and sequencing in an animal model for phenotypic analysis of quantitative traits, documents natural variation of starvation resistance in C. elegans, and identifies a genomic region that contributes to such variation

    Climate change adaptation, flood risks and policy coherence in integrated water resources management in England

    Get PDF
    Integrated water resources management (IWRM) assumes coherence between cognate aspects of water governance at the river basin scale, for example water quality, energy production and agriculture objectives. But critics argue that IWRM is often less ‘integrated’ in practice, raising concerns over inter-sectoral coherence between implementing institutions. One increasingly significant aspect of IWRM is adaptation to climate change-related risks, including threats from flooding, which are particularly salient in England. Although multiple institutional mechanisms exist for flood risk management (FRM), their coherence remains a critical question for national adaptation. This paper therefore (1) maps the multi-level institutional frameworks determining both IWRM and FRM in England; (2) examines their interaction via various inter-institutional coordinating mechanisms; and (3) assesses the degree of coherence. The analysis suggests that cognate EU strategic objectives for flood risk assessment demonstrate relatively high vertical and horizontal coherence with river basin planning. However, there is less coherence with flood risk requirements for land-use planning and national flood protection objectives. Overall, this complex governance arrangement actually demonstrates de-coherence over time due to ongoing institutional fragmentation. Recommendations for increasing IWRM coherence in England or re-coherence based on greater spatial planning and coordination of water-use and land-use strategies are proposed

    Clinical and cost-effectiveness of internal limiting membrane peeling for patients with idiopathic full thickness macular hole. Protocol for a Randomised Controlled Trial : FILMS (Full-thickness macular hole and Internal Limiting Membrane peeling Study)

    Get PDF
    Background: A full-thickness macular hole (FTMH) is a common retinal condition associated with impaired vision. Randomised controlled trials (RCTs) have demonstrated that surgery, by means of pars plana vitrectomy and post-operative intraocular tamponade with gas, is effective for stage 2, 3 and 4 FTMH. Internal limiting membrane (ILM) peeling has been introduced as an additional surgical manoeuvre to increase the success of the surgery; i.e. increase rates of hole closure and visual improvement. However, little robust evidence exists supporting the superiority of ILM peeling compared with no-peeling techniques. The purpose of FILMS (Fullthickness macular hole and Internal Limiting Membrane peeling Study) is to determine whether ILM peeling improves the visual function, the anatomical closure of FTMH, and the quality of life of patients affected by this disorder, and the cost-effectiveness of the surgery. Methods/Design: Patients with stage 2–3 idiopathic FTMH of less or equal than 18 months duration (based on symptoms reported by the participant) and with a visual acuity ≤ 20/40 in the study eye will be enrolled in this FILMS from eight sites across the UK and Ireland. Participants will be randomised to receive combined cataract surgery (phacoemulsification and intraocular lens implantation) and pars plana vitrectomy with postoperative intraocular tamponade with gas, with or without ILM peeling. The primary outcome is distance visual acuity at 6 months. Secondary outcomes include distance visual acuity at 3 and 24 months, near visual acuity at 3, 6, and 24 months, contrast sensitivity at 6 months, reading speed at 6 months, anatomical closure of the macular hole at each time point (1, 3, 6, and 24 months), health related quality of life (HRQOL) at six months, costs to the health service and the participant, incremental costs per quality adjusted life year (QALY) and adverse events. Discussion: FILMS will provide high quality evidence on the role of ILM peeling in FTMH surgery. Trial registration: This trial is registered with Current Controlled Trials ISRCTN number 33175422 and Clinical Trials.gov identifier NCT00286507.Chief Scientist Office, Scotland (project ref no CZH/4/235), NHS GrampianPeer reviewedPublisher PD
    corecore