32,028 research outputs found

    Equivalent damage: A critical assessment

    Get PDF
    The overall goal of achieving improved life cycle management of aircraft engine, gas turbine components is a major industry thrust. Low cycle fatigue (LCF) crack initiation prediction, an important element of life cycle management as traditionally applied, may be overly conservative in estimating total cyclic life capability. Consequently, there is increasing pressure to improve predictive methods both for crack initiation and for subsequent crack propagation. The utility of equivalent damage concepts for application to hot section components of aircraft engines was studied. Specifically, the topics examined were mean stress, cumulative damage, and multiaxiality. Other factors inherently linked to this study were the basic formulation of damage parameters at elevated temperatures and the fact that hot section components experience severe temperature fluctuations throughout their service lifetime

    Constitutive response of Rene 80 under thermal mechanical loads

    Get PDF
    The applicability of a classical constitutive model for stress-strain analysis of a nickel base superalloy, Rene' 80, in the gas turbine thermomechanical fatigue (TMF) environment is examined. A variety of tests were conducted to generate basic material data and to investigate the material response under cyclic thermomechanical loading. Isothermal stress-strain data were acquired at a variety of strain rates over the TMF temperature range. Creep curves were examined at 2 temperature ranges, 871 to 982 C and 760 to 871 C. The results provide optimism on the ability of the classical constitutive model for high temperature applications

    Multiparticle States and the Hadron Spectrum on the Lattice

    Get PDF
    The Clebsch-Gordan decomposition is calculated for direct products of the irreducible representations of the cubic space group. These results are used to identify multiparticle states which appear in the hadron spectrum on the lattice. Consideration of the cubic space group indicates how combinations of both zero momentum and non-zero momentum multiparticle states contribute to the spectrum.Comment: v2) Little groups for lattice momenta corrected. Includes a more consistent labeling scheme. (13 pages

    Exotic Meson Decay Widths using Lattice QCD

    Get PDF
    A decay width calculation for a hybrid exotic meson h, with JPC=1-+, is presented for the channel h->pi+a1. This quenched lattice QCD simulation employs Luescher's finite box method. Operators coupling to the h and pi+a1 states are used at various levels of smearing and fuzzing, and at four quark masses. Eigenvalues of the corresponding correlation matrices yield energy spectra that determine scattering phase shifts for a discrete set of relative pi+a1 momenta. Although the phase shift data is sparse, fits to a Breit-Wigner model are attempted, resulting in a decay width of about 60 MeV when averaged over two lattice sizes.Comment: 9 pages, 8 figures, RevTex4, minor change to Fig.

    A universal size classification system for landslides

    Get PDF
    Size is a fundamental property of landslides, but it is described inconsistently within the scientific literature. There is currently no widely adopted size classification system applicable to all landslide types. A Scopus database search shows the most used landslide size descriptor is the term large, used to refer to landslides with volumes spanning ten orders of magnitude. Some size descriptors are unintuitive or potentially misleading (e.g. the term massive which describes a material property). We argue that a formal size classification scheme would encourage more consistent and logical usage of size descriptors and improve landslide science communication. To that end, we propose a size classification scheme suitable for all landslide types. The scheme provides a log scale of size classes for volume and area, with base units of cubic metre and square metre, respectively. In theory, there is no limit to the number of size classes possible. Six size descriptors are suggested, each spanning 3 orders of magnitude: very small (10−3–100 m3), small (10–103 m3), medium (103–106 m3), large (106–109 m3), giant (109–1012 m3), and monster (1012–1015 m3). Our system does not replace existing (or preclude future) classification systems for specific landslide types (e.g. snow avalanche) that use numerical size classes, and it maintains consistency with some commonly used descriptors. Whatever system is used, we encourage people to define the terms they use and to quantify size where possible, so that clearer meaning is given to the words used to describe landslide sizes

    Implementing an apparent-horizon finder in three dimensions

    Get PDF
    Locating apparent horizons is not only important for a complete understanding of numerically generated spacetimes, but it may also be a crucial component of the technique for evolving black-hole spacetimes accurately. A scheme proposed by Libson et al., based on expanding the location of the apparent horizon in terms of symmetric trace-free tensors, seems very promising for use with three-dimensional numerical data sets. In this paper, we generalize this scheme and perform a number of code tests to fully calibrate its behavior in black-hole spacetimes similar to those we expect to encounter in solving the binary black-hole coalescence problem. An important aspect of the generalization is that we can compute the symmetric trace-free tensor expansion to any order. This enables us to determine how far we must carry the expansion to achieve results of a desired accuracy. To accomplish this generalization, we describe a new and very convenient set of recurrence relations which apply to symmetric trace-free tensors.Comment: 14 pages (RevTeX 3.0 with 3 figures

    Can a combination of the conformal thin-sandwich and puncture methods yield binary black hole solutions in quasi-equilibrium?

    Get PDF
    We consider combining two important methods for constructing quasi-equilibrium initial data for binary black holes: the conformal thin-sandwich formalism and the puncture method. The former seeks to enforce stationarity in the conformal three-metric and the latter attempts to avoid internal boundaries, like minimal surfaces or apparent horizons. We show that these two methods make partially conflicting requirements on the boundary conditions that determine the time slices. In particular, it does not seem possible to construct slices that are quasi-stationary and avoid physical singularities and simultaneously are connected by an everywhere positive lapse function, a condition which must obtain if internal boundaries are to be avoided. Some relaxation of these conflicting requirements may yield a soluble system, but some of the advantages that were sought in combining these approaches will be lost.Comment: 8 pages, LaTeX2e, 2 postscript figure

    Stability and collapse of rapidly rotating, supramassive neutron stars: 3D simulations in general relativity

    Get PDF
    We perform 3D numerical simulations in full general relativity to study the stability of rapidly rotating, supramassive neutron stars at the mass-shedding limit to dynamical collapse. We adopt an adiabatic equation of state with Γ=2\Gamma = 2 and focus on uniformly rotating stars. We find that the onset of dynamical instability along mass-shedding sequences nearly coincides with the onset of secular instability. Unstable stars collapse to rotating black holes within about one rotation period. We also study the collapse of stable stars which have been destabilized by pressure depletion (e.g. via a phase transition) or mass accretion. In no case do we find evidence for the formation of massive disks or any ejecta around the newly formed Kerr black holes, even though the progenitors are rapidly rotating.Comment: 16 pages, to appear in Phys. Rev.
    • …
    corecore