44 research outputs found

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Overview of the JET ITER-like wall divertor

    No full text
    The work presented draws on new analysis of components removed following the second JET ITER-like wall campaign 2013–14 concentrating on the upper inner divertor, inner and outer divertor corners, lifetime issues relating to tungsten coatings on JET carbon fibre composite divertor tiles and dust/particulate generation. The results show that the upper inner divertor remains the region of highest deposition in the JET-ILW. Variations in plasma configurations between the first and second campaign have altered material migration to the corners of the inner and outer divertor. Net deposition is shown to be beneficial in the sense that it reduces W coating erosion, covers small areas of exposed carbon surfaces and even encapsulates particles

    Competing and conflicting interests in the care of critically ill patients

    No full text
    Medical professionals are expected to prioritize patient interests, and most patients trust physicians to act in their best interest. However, a single patient is never a physician's sole concern. The competing interests of other patients, clinicians, family members, hospital administrators, regulators, insurers, and trainees are omnipresent. While prioritizing patient interests is always a struggle, it is especially challenging and important in the ICU setting where most patients lack the ability to advocate for themselves or seek alternative sources of care. This review explores factors that increase the risk, or the perception, that an ICU physician will reason, recommend, or act in a way that is not in their patient's best interest and discusses steps that could help minimize the impact of these factors on patient care

    COREDIV and SOLPS Numerical Simulations of the Nitrogen Seeded JET ILW L-mode Discharges

    No full text
    In this paper we present the comparison of simulations with the numerical codes COREDIV and SOLPS5.0 for JET L-mode discharges with ITER like wall (ILW). The simulations have been performed for L-mode shots with and without nitrogen seeding (#82291 - 9) which are characterised by relatively low auxiliary heating power (PNBI = 1.1 MW) and low electron density (ne = 2.35 × 1019 m–3). Comparisons are made to the experimental measurements (e.g. radiation levels, plasma profiles) and the differences between the results from the two codes (e.g. temperature and density profiles at the outer divertor plate) are shown and discussed

    JET experience on managing radioactive waste and implications for ITER

    No full text
    The reduced radiotoxicity and half-life of radioactive waste arisings from nuclear fusion reactors as compared to current fission reactors is one of the key benefits of nuclear fusion. As a result of the research programme at the Joint European Torus (JET), significant experience on the management of radioactive waste has been gained which will be of benefit to ITER and the nuclear fusion community.The successful management of radioactive waste is dependent on accurate and efficient tracking and characterisation of waste streams. To accomplish this all items at JET which are removed from radiological areas are identified and pre-characterised, by recording the radiological history, before being removed from or moved between radiological areas. This system ensures a history of each item is available when it is finally consigned as radioactive waste and also allows detailed forecasting of future arisings. All radioactive waste generated as part of JET operations is transferred to dedicated, on-site, handling facilities for further sorting, sampling and final streaming for off-site disposal. Tritium extraction techniques including leaching, combustion and thermal treatment followed by liquid scintillation counting are used to determine tritium content.Recent changes to government legislation and Culham specific disposal permit conditions have allowed CCFE to adopt additional disposal routes for fusion wastes requiring new treatment and analysis techniques. Facilities currently under construction include a water de-tritiation facility and a materials de-tritiation facility, both of which are relevant for ITER. The procedures used to manage radioactive waste from generation to off-site disposal have been assessed for relevance to ITER and a number have been shown to be significant. The procedures and de-tritiation factors demonstrated by radioactive waste treatment plants currently under construction will be important to tritium recovery and waste minimisation in ITER and DEMO

    Sparse representation of signals: From astrophysics to real-time data analysis for fusion plasmas and system optimization analysis for ITER and TCV

    No full text
    Efficient, real-time and automated data analysis is one of the key elements for achieving scientific success in complex engineering and physical systems, two examples of which include the JET and ITER tokamaks. One problem which is common to these fields is the determination of the pulsation modes from an irregularly sampled time series. To this end, there are a wealth of signal processing techniques that are being applied to post-pulse and real-time data analysis in such complex systems. Here, we wish to present a review of the applications of a method based on the sparse representation of signals, using examples of the synergies that can be exploited when combining ideas and methods from very different fields, such as astronomy, astrophysics and thermonuclear fusion plasmas. Examples of this work in astronomy and astrophysics are the analysis of pulsation modes in various classes of stars and the orbit determination software of the Pioneer spacecraft. Two examples of this work in thermonuclear fusion plasmas include the detection of magneto-hydrodynamic instabilities, which is now performed routinely in JET in real-time on a sub-millisecond time scale, and the studies leading to the optimization of the magnetic diagnostic system in ITER and TCV. These questions have been solved by formulating them as inverse problems, despite the fact that these applicative frameworks are extremely different from the classical use of sparse representations, from both the theoretical and computational point of view. The requirements, prospects and ideas for the signal processing and real-time data analysis applications of this method to the routine operation of ITER will also be discussed. Finally, a very recent development has been the attempt to apply this method to the deconvolution of the measurement of electric potential performed during a ground-based survey of a proto-Villanovian necropolis in central Italy

    Sawtooth pacing with on-axis ICRH modulation in JET-ILW

    No full text
    A novel technique for sawteeth control in tokamak plasmas using ion-cyclotron resonance heating (ICRH) has been developed in the JET-ILW tokamak. Unlike previous ICRH methods, that explored the destabilization of the internal kink mode when the radio-frequency (RF) wave absorption was placed near the q = 1 surface, the technique presented here consists of stabilizing the sawteeth as fast as possible by applying the ICRH power centrally and subsequently induce a sawtooth crash by switching it off at the appropriate instant. The validation of this method in JET-ILW L-mode discharges, including preliminary tests in H-mode plasmas, is presented
    corecore