529 research outputs found
ATTENUATION CORRECTION IN CARDIAC PET/CT USING A TIME- AVERAGED CT
Heart disease is a leading cause of death in Canada, and Positron Emission Tomography (PET) is the gold standard for determining the viability of heart tissue following a heart attack. PET images require correction for attenuation, that is, for signal absorption by patient tissues. Attenuation correction (AC), is done via a transmission scan such as Computed Tomography (CT). However, due to the differences between PET and CT scan durations, respiration-induced motion can cause temporal mismatches leading to errors in the reconstructed PET image. This study compares the magnitude of these errors when single-phase CT, respiratory-averaged CT, and 4D CT are used for AC of cardiac PET in an in vivo canine model. The respiratory-averaged CT correction produced maximum percentage differences that were 7 times less than those produced by the single-phase correction. Using a respiratory-averaged CT may provide an accurate form of AC for cardiac PET imaging
An integrated approach to modelling the fluid-structure interaction of a collapsible tube
The well known collapsible tube experiment was conducted to obtain flow, pressure and materials property data for steady state conditions. These were then used as the boundary conditions for a fully coupled fluid-structure interaction (FSI) model using a propriety computer code, LS-DYNA. The shape profiles for the tube were also recorded. In order to obtain similar collapse modes to the experiment, it was necessary to model the tube flat, and then inflate it into a circular profile, leaving residual stresses in the walls. The profile shape then agreed well with the experimental ones. Two departures from the physical properties were required to reduce computer time to an acceptable level. One of these was the lowering of the speed of sound by two orders of magnitude which, due to the low velocities involved, still left the mach number below 0.2. The other was to increase the thickness of the tube to prevent the numerical collapse of elements. A compensation for this was made by lowering the Young's modulus for the tube material. Overall the results are qualitatively good. They give an indication of the power of the current FSI algorithms and the need to combine experiment and computer models in order to maximise the information that can be extracted both in terms of quantity and quality
Early reconstitution of effector memory CD4+ CMV-specific T cells protects against CMV reactivation following allogeneic SCT.
Reactivation of CMV is a common complication following allogeneic haematopoietic SCT and is associated with significant morbidity and mortality. The relative importance of the CD4+ and CD8+ components of the CMV-specific immune response in protection from reactivation is unclear. The CMV-specific CD4+ and CD8+ immune response was measured at serial time points in 32 patients following allogeneic HSCT. Intracellular cytokine staining following CMV lysate stimulation and HLA-peptide tetramers were used to determine CMV-specific CD4+ and CD8+ responses, respectively. A deficient CMV-specific CD4+ T-cell immune response within the first 30-50 days post transplant was associated with high risk of viral reactivation. Patients with combined impairment of the CD4+ and CD8+ immune response within the first 100 days were susceptible to late viral reactivation. The frequency of CMV-specific CD4+ T cells correlated with CMV-specific CD8+ T cells, comprising 10% of the whole T-cell repertoire. Early CMV-specific CD4+ T-cell reconstitution was dominated by effector memory cells with normal levels of IL-2 resuming 6 months following transplantation. In summary, both CD4 and CD8 CMV-specific immune reconstitution is required for protection from recurrent activation. Measurement of the magnitude of the CMV-specific CD4+ immune response is useful in managing viral reactivation following HSCT
Stress corrosion cracking in Al-Zn-Mg-Cu aluminum alloys in saline environments
Copyright 2013 ASM International. This paper was published in Metallurgical and Materials Transactions A, 44A(3), 1230 - 1253, and is made
available as an electronic reprint with the permission of ASM International. One print or electronic copy may
be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via
electronic or other means, duplications of any material in this paper for a fee or for commercial purposes, or
modification of the content of this paper are prohibited.Stress corrosion cracking of Al-Zn-Mg-Cu (AA7xxx) aluminum alloys exposed to saline environments at temperatures ranging from 293 K to 353 K (20 °C to 80 °C) has been reviewed with particular attention to the influences of alloy composition and temper, and bulk and local environmental conditions. Stress corrosion crack (SCC) growth rates at room temperature for peak- and over-aged tempers in saline environments are minimized for Al-Zn-Mg-Cu alloys containing less than ~8 wt pct Zn when Zn/Mg ratios are ranging from 2 to 3, excess magnesium levels are less than 1 wt pct, and copper content is either less than ~0.2 wt pct or ranging from 1.3 to 2 wt pct. A minimum chloride ion concentration of ~0.01 M is required for crack growth rates to exceed those in distilled water, which insures that the local solution pH in crack-tip regions can be maintained at less than 4. Crack growth rates in saline solution without other additions gradually increase with bulk chloride ion concentrations up to around 0.6 M NaCl, whereas in solutions with sufficiently low dichromate (or chromate), inhibitor additions are insensitive to the bulk chloride concentration and are typically at least double those observed without the additions. DCB specimens, fatigue pre-cracked in air before immersion in a saline environment, show an initial period with no detectible crack growth, followed by crack growth at the distilled water rate, and then transition to a higher crack growth rate typical of region 2 crack growth in the saline environment. Time spent in each stage depends on the type of pre-crack (“pop-in” vs fatigue), applied stress intensity factor, alloy chemistry, bulk environment, and, if applied, the external polarization. Apparent activation energies (E a) for SCC growth in Al-Zn-Mg-Cu alloys exposed to 0.6 M NaCl over the temperatures ranging from 293 K to 353 K (20 °C to 80 °C) for under-, peak-, and over-aged low-copper-containing alloys (~0.8 wt pct), they are typically ranging from 20 to 40 kJ/mol for under- and peak-aged alloys, and based on limited data, around 85 kJ/mol for over-aged tempers. This means that crack propagation in saline environments is most likely to occur by a hydrogen-related process for low-copper-containing Al-Zn-Mg-Cu alloys in under-, peak- and over-aged tempers, and for high-copper alloys in under- and peak-aged tempers. For over-aged high-copper-containing alloys, cracking is most probably under anodic dissolution control. Future stress corrosion studies should focus on understanding the factors that control crack initiation, and insuring that the next generation of higher performance Al-Zn-Mg-Cu alloys has similar longer crack initiation times and crack propagation rates to those of the incumbent alloys in an over-aged condition where crack rates are less than 1 mm/month at a high stress intensity factor
Atomic diffraction from nanostructured optical potentials
We develop a versatile theoretical approach to the study of cold-atom
diffractive scattering from light-field gratings by combining calculations of
the optical near-field, generated by evanescent waves close to the surface of
periodic nanostructured arrays, together with advanced atom wavepacket
propagation on this optical potential.Comment: 8 figures, 10 pages, submitted to Phys. Rev.
Connecting Numerical Relativity and Data Analysis of Gravitational Wave Detectors
Gravitational waves deliver information in exquisite detail about
astrophysical phenomena, among them the collision of two black holes, a system
completely invisible to the eyes of electromagnetic telescopes. Models that
predict gravitational wave signals from likely sources are crucial for the
success of this endeavor. Modeling binary black hole sources of gravitational
radiation requires solving the Eintein equations of General Relativity using
powerful computer hardware and sophisticated numerical algorithms. This
proceeding presents where we are in understanding ground-based gravitational
waves resulting from the merger of black holes and the implications of these
sources for the advent of gravitational-wave astronomy.Comment: Appeared in the Proceedings of 2014 Sant Cugat Forum on Astrophysics.
Astrophysics and Space Science Proceedings, ed. C.Sopuerta (Berlin:
Springer-Verlag
Astrophysical structures from primordial quantum black holes
The characteristic sizes of astrophysical structures, up to the whole
observed Universe, can be recovered, in principle, assuming that gravity is the
overall interaction assembling systems starting from microscopic scales, whose
order of magnitude is ruled by the Planck length and the related Compton
wavelength. This result agrees with the absence of screening mechanisms for the
gravitational interaction and could be connected to the presence of Yukawa
corrections in the Newtonian potential which introduce typical interaction
lengths. This result directly comes out from quantization of primordial black
holes and then characteristic interaction lengths directly emerge from quantum
field theory.Comment: 11 page
Bad influence? – an investigation into the purported negative influence of foreign domestic helpers on children's second language English acquisition
This paper explores the purported negative influence of foreign domestic helpers (FDHs) on child second language acquisition (SLA) by studying Hong Kong Cantonese children's listening ability in second language (L2) English. 31 kindergarten third graders aged 4;6 to 6, and 29 first year secondary students aged 11-14 who have had a Filipino domestic helper at home took part in the study. In addition, 34 youngsters (20 in kindergarten, 14 in secondary) who did not have a Filipino helper participated as controls. Results from two listening tasks (picture choosing task, sound discrimination task) suggest that informants do not differ from the control in their abilities to listen to American-, British-, and Hong Kong English, and that they are better at listening to Filipino-accented English than the control. These findings cast doubts on the anecdotal belief of the harmful effect FDHs have on children's language acquisition including an L2. Moreover, the additional effect of being familiar with another variety of English is arguably a desirable outcome given that English is used as a lingua franca among non-native speakers on a daily basis in this highly globalised world
Nuclear Alpha-Particle Condensates
The -particle condensate in nuclei is a novel state described by a
product state of 's, all with their c.o.m. in the lowest 0S orbit. We
demonstrate that a typical -particle condensate is the Hoyle state
( MeV, state in C), which plays a crucial role for
the synthesis of C in the universe. The influence of antisymmentrization
in the Hoyle state on the bosonic character of the particle is
discussed in detail. It is shown to be weak. The bosonic aspects in the Hoyle
state, therefore, are predominant. It is conjectured that -particle
condensate states also exist in heavier nuclei, like O,
Ne, etc. For instance the state of O at MeV
is identified from a theoretical analysis as being a strong candidate of a
condensate. The calculated small width (34 keV) of ,
consistent with data, lends credit to the existence of heavier Hoyle-analogue
states. In non-self-conjugated nuclei such as B and C, we discuss
candidates for the product states of clusters, composed of 's,
triton's, and neutrons etc. The relationship of -particle condensation
in finite nuclei to quartetting in symmetric nuclear matter is investigated
with the help of an in-medium modified four-nucleon equation. A nonlinear order
parameter equation for quartet condensation is derived and solved for
particle condensation in infinite nuclear matter. The strong qualitative
difference with the pairing case is pointed out.Comment: 71 pages, 41 figures, review article, to be published in "Cluster in
Nuclei (Lecture Notes in Physics) - Vol.2 -", ed. by C. Beck,
(Springer-Verlag, Berlin, 2011
Magnetic Field Generation in Stars
Enormous progress has been made on observing stellar magnetism in stars from
the main sequence through to compact objects. Recent data have thrown into
sharper relief the vexed question of the origin of stellar magnetic fields,
which remains one of the main unanswered questions in astrophysics. In this
chapter we review recent work in this area of research. In particular, we look
at the fossil field hypothesis which links magnetism in compact stars to
magnetism in main sequence and pre-main sequence stars and we consider why its
feasibility has now been questioned particularly in the context of highly
magnetic white dwarfs. We also review the fossil versus dynamo debate in the
context of neutron stars and the roles played by key physical processes such as
buoyancy, helicity, and superfluid turbulence,in the generation and stability
of neutron star fields.
Independent information on the internal magnetic field of neutron stars will
come from future gravitational wave detections. Thus we maybe at the dawn of a
new era of exciting discoveries in compact star magnetism driven by the opening
of a new, non-electromagnetic observational window.
We also review recent advances in the theory and computation of
magnetohydrodynamic turbulence as it applies to stellar magnetism and dynamo
theory. These advances offer insight into the action of stellar dynamos as well
as processes whichcontrol the diffusive magnetic flux transport in stars.Comment: 41 pages, 7 figures. Invited review chapter on on magnetic field
generation in stars to appear in Space Science Reviews, Springe
- …