32,618 research outputs found

    Effects of visual and motion simulation cueing systems on pilot performance during takeoffs with engine failures

    Get PDF
    Data are presented that show the effects of visual and motion during cueing on pilot performance during takeoffs with engine failures. Four groups of USAF pilots flew a simulated KC-135 using four different cueing systems. The most basic of these systems was of the instrument-only type. Visual scene simulation and/or motion simulation was added to produce the other systems. Learning curves, mean performance, and subjective data are examined. The results show that the addition of visual cueing results in significant improvement in pilot performance, but the combined use of visual and motion cueing results in far better performance

    Tensor Generalizations of Affine Symmetry Vectors

    Full text link
    A definition is suggested for affine symmetry tensors, which generalize the notion of affine vectors in the same way that (conformal) Killing tensors generalize (conformal) Killing vectors. An identity for these tensors is proved, which gives the second derivative of the tensor in terms of the curvature tensor, generalizing a well-known identity for affine vectors. Additionally, the definition leads to a good definition of homothetic tensors. The inclusion relations between these types of tensors are exhibited. The relationship between affine symmetry tensors and solutions to the equation of geodesic deviation is clarified, again extending known results about Killing tensors.Comment: 11 page

    Single Shot Quantum State Estimation via a Continuous Measurement in the Strong Backaction Regime

    Get PDF
    We study quantum tomography based on a stochastic continuous-time measurement record obtained from a probe field collectively interacting with an ensemble of identically prepared systems. In comparison to previous studies, we consider here the case in which the measurement-induced backaction has a nonnegligible effect on the dynamical evolution of the ensemble. We formulate a maximum likelihood estimate for the initial quantum state given only a single instance of the continuous diffusive measurement record. We apply our estimator to the simplest problem -- state tomography of a single pure qubit, which, during the course of the measurement, is also subjected to dynamical control. We identify a regime where the many-body system is well approximated at all times by a separable pure spin coherent state, whose Bloch vector undergoes a conditional stochastic evolution. We simulate the results of our estimator and show that we can achieve close to the upper bound of fidelity set by the optimal POVM. This estimate is compared to, and significantly outperforms, an equivalent estimator that ignores measurement backaction.Comment: 10 pages, 5 epic figure

    Optimizing evacuation flow in a two-channel exclusion process

    Full text link
    We use a basic setup of two coupled exclusion processes to model a stylised situation in evacuation dynamics, in which evacuees have to choose between two escape routes. The coupling between the two processes occurs through one common point at which particles are injected, the process can be controlled by directing incoming individuals into either of the two escape routes. Based on a mean-field approach we determine the phase behaviour of the model, and analytically compute optimal control strategies, maximising the total current through the system. Results are confirmed by numerical simulations. We also show that dynamic intervention, exploiting fluctuations about the mean-field stationary state, can lead to a further increase in total current.Comment: 16 pages, 6 figure

    Testing a Simplified Version of Einstein's Equations for Numerical Relativity

    Get PDF
    Solving dynamical problems in general relativity requires the full machinery of numerical relativity. Wilson has proposed a simpler but approximate scheme for systems near equilibrium, like binary neutron stars. We test the scheme on isolated, rapidly rotating, relativistic stars. Since these objects are in equilibrium, it is crucial that the approximation work well if we are to believe its predictions for more complicated systems like binaries. Our results are very encouraging.Comment: 9 pages (RevTeX 3.0 with 6 uuencoded figures), CRSR-107

    Reheating predictions in single field inflation

    Full text link
    Reheating is a transition era after the end of inflation, during which the inflaton is converted into the particles that populate the Universe at later times. No direct cosmological observables are normally traceable to this period of reheating. Indirect bounds can however be derived. One possibility is to consider cosmological evolution for observable CMB scales from the time of Hubble crossing to the present time. Depending upon the model, the duration and final temperature after reheating, as well as its equation of state, may be directly linked to inflationary observables. For single-field inflationary models, if we approximate reheating by a constant equation of state, one can derive relations between the reheating duration (or final temperature), its equation of state parameter, and the scalar power spectrum amplitude and spectral index. While this is a simple approximation, by restricting the equation of state to lie within a broad physically allowed range, one can in turn bracket an allowed range of nsn_s and rr for these models. The added constraints can help break degeneracies between inflation models that otherwise overlap in their predictions for nsn_s and rr.Comment: 32 pages, 15 figures. Revised in response to comments on the original version, and in preparation for submission for publication. More references and a new figure were adde

    Approximate Killing Vectors on S^2

    Full text link
    We present a new method for computing the best approximation to a Killing vector on closed 2-surfaces that are topologically S^2. When solutions of Killing's equation do not exist, this method is shown to yield results superior to those produced by existing methods. In addition, this method appears to provide a new tool for studying the horizon geometry of distorted black holes.Comment: 4 pages, 3 figures, submitted to Physical Review D, revtex
    corecore