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Single-shot quantum state estimation via a continuous measurement in the strong backaction regime
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We study quantum tomography based on a stochastic continuous-time measurement record obtained from a
probe field collectively interacting with an ensemble of identically prepared systems. In comparison to previous
studies, we consider here the case in which the measurement-induced backaction has a non-negligible effect on
the dynamical evolution of the ensemble. We formulate a maximum likelihood estimate for the initial quantum
state given only a single instance of the continuous diffusive measurement record. We apply our estimator to the
simplest problem: state tomography of a single pure qubit, which, during the course of the measurement, is also
subjected to dynamical control. We identify a regime where the many-body system is well approximated at all
times by a separable pure spin coherent state, whose Bloch vector undergoes a conditional stochastic evolution.
We simulate the results of our estimator and show that we can achieve close to the upper bound of fidelity set by
the optimal generalized measurement. This estimate is compared to, and significantly outperforms, an equivalent
estimator that ignores measurement backaction.
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I. INTRODUCTION

A fundamental task in quantum information processing
is the ability both to reliably prepare an arbitrary quantum
state and to experimentally verify its production. Traditional
quantum state tomography (QST) relies on an exhaustive
procedure where the target state is repeatedly prepared and
then destructively measured in an informationally complete
number of measurement settings. Such a procedure is often
extremely time intensive, requiring a significant amount of
both data and postprocessing time [1,2].

These inefficiencies can be significantly reduced when one
can perform a weak continuous measurement, acting collec-
tively on an identically prepared ensemble, in conjunction
with a well-chosen dynamical control [3,4]. In particular,
consider an ensemble of N systems prepared in an identical
tensor product state ρtot = ρ⊗N

0 , experiencing a known time-
dependent control Hamiltonian while simultaneously coupled
to a traveling wave probe. If the control drives the system such
that a continuous measurement of the probe is informationally
complete, then one can use this measurement record to obtain
a high-fidelity estimate of the initial state of the system,
ρ0.

This protocol has been implemented in experiments [5,6]
with quantum states encoded in the hyperfine spins of
an ensemble of laser-cooled cesium atoms controlled with
magneto-optical fields [6–8] and measured with polarization
spectroscopy [9]. By applying an appropriate estimator to
the measurement record, one can obtain high-fidelity recon-
structions of arbitrary states in the 16-dimensional hyperfine
ground-state manifold of cesium. However, these experiments
were performed under far from idealized conditions. The
reconstructions were ultimately limited by systematic errors
and decoherence caused by spontaneous emission. While
detrimental to the final fidelity, these limitations simplified the
analysis, as the collective effects of quantum backaction were
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completely negligible. Because of these facts, any fundamental
limits of continuous-measurement-based QST have yet to be
addressed.

Here, we extend this protocol to an idealized regime, free
of technical imperfections and decoherence, where any limita-
tions are solely due to the quantum backaction induced by the
measurement itself and thus fundamental to the tomographic
protocol. Recent works have studied how such continuous
measurements in the presence of back action can be used for
parameter estimation [10,11], hypothesis testing [12,13], and
for the closely related problem of retrodicting a past system
estimate given future measurements [14]. Such protocols have
recently been implemented in continuous measurement of
a superconducting qubit [15], a platform where quantum
trajectories have been observed and predicted to give optimal
routes between quantum states [16].

In the context of continuous collective measurement on
an ensemble, the primary effects of measurement backaction
are to introduce correlations between the atoms, i.e., spin
squeezing [17], as well as to perturb the mean spin in a
random and nonlinear way. Both effects greatly increase the
complexity of the quantum state tomography, as the former
necessitates a many-body description and the latter prevents
the use of many standard tomographic techniques, e.g., convex
optimization. This work addresses these issues by deriving a
general likelihood function for a continuous-time diffusive
measurement of a collective spin projection and derives an
efficiently computable approximation in the case of pure
qubits. We then use this function to numerically compute a
maximum likelihood estimate (MLE) to reconstruct the initial
state. We compare our results to the well-known bounds for
the average fidelity [18], which is achieved by the optimal
collective positive operator valued measure (POVM) [19].

The remainder of this paper is structured as follows. We first
establish a general mathematical model for a continuous-time,
collective-spin measurement via polarization spectroscopy,
with particular emphasis on the conditions under which
quantum backaction cannot be neglected. We then derive a
maximum likelihood (ML) estimator for the initial state of
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the ensemble given a diffusive continuous-time measurement.
From the general expression, we specialize to estimating the
initial state of a pure qubit given an ensemble of identical
copies. We derive an efficiently computable approximation
to the exact expression under the condition that the entan-
gling effects of the measurement backaction are negligible,
while stochastic kicks to the Bloch vector induced by the
measurement remain important. We then numerically test the
performance of the approximate MLE for a moderate number
of qubits and compare the results both to the optimal POVM
for quantum tomography and an estimator that completely
ignores the effect of measurement backaction. We conclude
with a summary and outlook for future studies.

II. SPIN ESTIMATION THROUGH POLARIZATION
SPECTROCOPY

We consider cold atomic spins measured via polarization
spectroscopy as our model platform in which to examine the
fundamental limits of QST based on continuous measurement
and control [20]; a schematic is shown in Fig. 1. The
measurement is made via the Faraday interaction, whereby
the linear polarization of an off-resonant probe laser rotates
in proportion to the collective magnetization of the atomic
ensemble along the direction of propagation of the probe. For
a system composed of N atoms identically coupled to the
probe field, a measurement of this rotation results in a quantum
nondemolition (QND) measurement of the collective angular
momentum operator, Jz = ∑N

i=1 j (i)
z , where j (i)

z is the z-axis
projection of the ith atomic spin operator. This measurement

(a)

(b)

FIG. 1. (Color online) Schematic and sample measurement.
(a) An atomic ensemble is probed by an off-resonant, linearly
polarized laser, while simultaneously being subjected to external RF
magnetic control fields. The outgoing laser is measured by a balanced
polarimeter, whose integrated current generates a noisy measurement
record y(t). (b) A typical simulated measurement record for N = 50
symmetrically coupled qubits initialized in a spin coherent state along
the x axis.

occurs at a rate κ , which is set by the input photon flux times
the rate at which a single atom will scatter an incident photon
into the orthogonal polarization mode.

A balanced polarimeter measuring in a basis 45◦ to the input
polarization implements an effective homodyne measurement,
where the probe field acts as the local oscillator [21]. In order
to isolate the fundamental measurement statistics from any
technical imperfections, we assume that the polarimeter is
shot noise limited, i.e., introduces no additional noise, and is
perfectly linear with unit quantum efficiency.

In the absence of any dynamical control, the measurement
outcomes of such a polarimeter averaged over a time T , x,
occur with a probability P (x) = Tr(Exρtot), where

Ex =
√

κT

2π
e− κT

2 (x−Jz)2
(1)

are the elements of a POVM [20,22,23]. As T → ∞ this
becomes a projective collective measurement of the observable
Jz. At short times this describes a weak collective measurement
of Jz with finite resolution set by the shot-noise variance of
the measurement, 1/κT .

When the output homodyne current is monitored contin-
uously in time, the integrated current describes a stochastic
process, {y(t) : 0 � t � T }, where T is the fixed final time.
For a system prepared in the definite initial condition ρtot(0),
allowing for dynamical control and measurement backaction,
this can be be written as [24]

y(t) = √
κ

∫ t

0
Tr[Jzρtot(s)] ds + w(t), (2)

where {w(t) : t � 0} is a realization of the Wiener process
and models the time integral over the uncorrelated shot noise
introduced by the quantum limited measurements made at
every time t [see Fig. 1(b)]. The goal of QST is to estimate
ρtot(0) given an observation of {y(t) : 0 � t � T } and a
particular model for its statistics.

In a single run of the experiment, the evolution of ρtot(t) con-
ditioned on this measurement record is governed by the well-
known diffusive stochastic master equation (SME) [22,23]
(� = 1),

dρtot(t) = −i[Hc(t),ρtot(t)] dt + γdiss D[ρtot(t)] dt

+κ

4
L[ρtot(t)] dt +

√
κ

2
H[ρtot(t)] dv(t), (3)

dv(t) ≡ dy(t) − √
κ Tr[ρtot(t)Jz] dt,

where Hc(t) is the externally applied control Hamiltonian and
we have defined the maps

L[ρtot] ≡ Jz ρtot Jz − 1
2J 2

z ρtot − 1
2ρtotJ

2
z ,

H[ρtot] ≡ Jz ρtot + ρtot Jz − 2 Tr[ρtot(t)Jz]ρtot.
(4)

We have also included an additional general channel D[ρtot]
that accounts for any additional sources of decoherence
occurring at a characteristic rate γdiss. The stochastic process
defined by the differential dv(t) is known as the innovation
process and determines the strength of the measurement
backaction in a given interval. When the measurement record
is consistent with the true state of the system, the innovation
is a Wiener process, dv(t) = dw(t), as follows from inverting
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Eq. (2). However, the task of QST is to estimate an unknown
quantum state given some data. To derive such an estimate,
one must evolve a conditional state from an initial condition
ρ ′

tot(0) not equal to the initial condition used to generate the
data. Written in terms of the innovation, Eq. (3) is still valid, but
in general, we cannot assume that the innovation is a Wiener
process.

Previous experiments on QST via continuous measure-
ment [5,6] operated in a regime where the control Hamil-
tonian Hc(t) and decoherence rate γdiss were much larger in
magnitude than the measurement terms proportional to κ . The
measurement duration, T , was chosen such that γdissT < 1.
Thus, since κT 	 1, the stochastic measurement outcomes in
the measurement record are completely dominated by the shot
noise in the probe rather than the “projection noise” uncertainty
of the state, (�Jz)2

PN = Tr[ρtot(0)J 2
z ] − Tr[ρtot(0)Jz]2. In that

case, measurement backaction is negligible over the duration
of the measurement and the system will remain unentangled.
The expected value of the collective spin is then well
approximated as Tr[Jzρtot(t)] ≈ N Tr[jzρ̃(t)], where ρ̃ is the
single-particle density operator that evolves solely under an
unconditional master equation

d

dt
ρ̃(t) = −i[hc(t),ρ̃(t)] + γdissD(1)[ρ̃(t)], (5)

where hc(t) is the single-atom control Hamiltonian, and D(1)

is the single-atom decoherence map. In this backaction-free
approximation, the tomographic estimate for the initial state
ρ̃(0) reduces to a standard problem of constrained ML [4].

Here we consider the opposite regime, where γdiss = 0
and κT is not necessarily small. This presents a formidable
challenge due to the nonlinear nature of H[ρtot], as well as the
fact that the future values of y(t) depend on its past through
the conditional nature of ρtot. For simplicity, we restrict
our attention here to the case of pure-state, nondissipative
dynamics. When γdiss = 0 and assuming perfect measurement
(i.e., unit quantum efficiency), the evolution of an initial pure
state will remain pure. It is then sufficient to propagate a
collective state vector, |�(t)〉, which evolves according to a
conditional Schrödinger equation (CSE) [22],

d|�(t)〉 = [−iHc(t) − 1
8κ(Jz − 〈Jz〉�(t))

2
]|�(t)〉 dt

+ 1
2

√
κ (Jz − 〈Jz〉�(t)) |�(t)〉 dv(t), (6)

dv(t) = dy(t) − √
κ〈Jz〉�(t) dt,

where 〈Jz〉�(t) = 〈�(t)|Jz|�(t)〉. Our goal is to deduce the
initial state |ψ(0)〉 of one member of an identical ensemble,
given an initial product state, |�(0)〉 = |ψ(0)〉⊗N , and a
continuous measurement record of the form of Eq. (2), when
the collective state evolves according to Eq. (6).

III. THE LIKELIHOOD FUNCTION

Estimating an initial quantum state from an observed
measurement record is fundamentally a problem of statistical
inference. Here we utilize an MLE given the measurement
record {y(t) : 0 � t � T }, obtained over time from a collective
measurement on a single ensemble. Our derivation hinges on
the known form of the measurement record given in Eq. (2)
and the fact that the quantum trajectory is consistent with our

model of homodyne detection. Given this, we are able to apply
well-developed classical methods for analyzing continuous-
time stochastic processes. Here we include a pedagogical
derivation of the necessary expression, Eq. (12), in such a way
as to minimize any references to measure theoretic probability
theory. However, this expression can be independently derived
in the fully rigorous setting [25, Theorem 7.19].

We begin by considering a general stochastic process,
{x(t) : 0 � t � T }, defined by the integral

x(t) =
∫ t

0
m(θ0,s,x(s)) ds + w(t), (7)

where m(θ0,t,x(t)) is the instantaneous mean signal, which
is assumed to be a time-dependent functional of the history
of {x(t)}, and θ0 is a vector of unknown parameters in the
model. By assuming that m(θ0,t,x(t)) can only depend on
{x(s) : 0 � s < t}, we are able to analyze the statistics of
{x(t) : 0 � t � T } by first considering the statistics of the
Wiener process and then making a simple change of variables.
The defining properties of the Wiener process are that (i) it has a
continuous trajectory starting from 0 and (ii) its increments are
independent, mean 0, Gaussian-distributed random variables,
whose variance is equal to the increment’s time duration.
These criteria imply that the joint probability density for a
sampling from the Wiener process is simply a product of
nested Gaussians and therefore so will be the joint density
for an equivalent sampling from {x(t)}.

To initially avoid some subtleties inherent to continuous-
time stochastic processes, we first consider {x(t)} sampled at
a countably dense set of n times {ti ∈ [0,∞) : 0 = t0 < t1 <

· · · < tn = T } and then examine the continuous limit. To ease
the notation, we define the quantities m

θ0
i ≡ m(θ0,ti ,x(ti)),

�ti ≡ ti − ti−1, and �xi ≡ x(ti) − x(ti−1). We obtain the
continuous limit as �ti → 0 or, equivalently, n → ∞. For
simplicity, we also assume that n is large enough that the
approximation

∫ ti
ti−1

m(θ0,s,x(s)) ds ≈ m
θ0
i−1 �ti is valid. The

joint probability that each sample xi will be found in a
corresponding interval [ai,bi] is well approximated by the
integrals

P({xi ∈ [ai,bi]}) ≈
∫ b1

a1

dx1 . . .

∫ bn

an

dxn

×
n∏

i=1

exp
[− 1

2�ti

(
�xi − m

θ0
i−1 �ti

)2]
√

2π�ti
.

(8)

A natural way to perform ML estimation would be to
consider the integrand in Eq. (8) as the likelihood Ln(θ ),
i.e., a function of the input parameter vector θ , given the
sampled observation of {x(t) : 0 � t � T } as determined by
the unknown parameters θ0:

Ln(θ ) ≡
n∏

i=1

exp
[− 1

2�ti

(
�xi − mθ

i−1 �ti
)2]

√
2π�ti

. (9)

However, this likelihood fails to be of use in the continuous-
time limit because as �ti → 0, the short-time statistics are
dominated by shot noise and are ultimately independent of
θ . This can be seen by substituting the definition of �xi via
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Eq. (7), which results in

Ln(θ ) =
n∏

i=1

exp
{− 1

2

[
�wi√
�ti

− (
mθ

i−1 − m
θ0
i−1

)√
�ti

]2}
√

2π�ti
.

(10)

For any noise realization and �ti > 0, the random variables
ξi ≡ �wi/

√
�ti are mean 0 Gaussian random variables with

unit variance. Therefore, at every time index, an estimator
maximizing Eq. (9) would minimize the squared deviation of a
number ξi ∼ O(1), from an expression proportional to

√
�ti .

In the limit �ti → 0, this is independent of θ and depends
solely on the unwanted shot noise. While we could reduce this
effect by coarse graining the measurement record over longer
time intervals, such a procedure would also necessarily coarse
grain over the time dependence in m, possibly resulting in a
loss of information about θ0.

Fortunately, we can make use of the full continuous
measurement record by instead considering a likelihood ratio
between a candidate parameter θ1 and a reference parameter
θ2. Upon doing so the divergences represented by ξi cancel,
leaving a useful expression in the continuous-time limit.
Computing this ratio and simplifying gives

Ln(θ1)

Ln(θ2)
= exp

{
n∑

i=1

[
m

θ1
i−1 − m

θ2
i−1

]
�xi

− 1
2

n∑
i=1

[(
m

θ1
i−1

)2 − (
m

θ2
i−1

)2]
�ti

}
. (11)

The limit �ti → 0 of this expression exists, is meaningful, and
results in the exponentiated Itō integral,

�(θ1,θ2) ≡ exp

{ ∫ T

0
[m(θ1,t,x(t)) − m(θ2,t,x(t))] dx(t)

− 1

2

∫ T

0
[m(θ1,t,x(t))2 − m(θ2,t,x(t))2] dt

}
.

(12)

While this expression removes the short-time singularities
present in the Wiener process, we now must also consider how
the expected mean evolves not only given the “hypothesis” θ1,
but also given θ2.

While it is most common to define a likelihood function as
the probability density with respect to a uniform measure, e.g.,
dx, this is actually not strictly necessary. What is necessary
is that, given a family of probability measures, {Pθ : θ ∈
� ⊂ Rd}, there must exist a density that can transform the
probability measure Pθ2 into Pθ1 without ever “dividing by
0”; in other words, they all must assign 0 probability to
the same events and so are, in some sense, equivalent [26].
While we refer to Eq. (12) as a likelihood ratio, it is in fact
a valid density for transforming the measure Pθ2 , which gives
the proper probabilities for a diffusive trajectory with a drift
parameterized by θ2, into the measure Pθ1 . Thus, for every
event A, Pθ1 (A) = ∫

A
dPθ1 = ∫

A
�(θ1,θ2) dPθ2 [25, Theorem

7.19]. It is in this sense that, given a particular realization of
{x(t)}, the maximum of Eq. (12) with respect to θ1 truly is the
MLE for θ .

To turn this general expression into the form we ultimately
use, we first note that, given a measurement record, {y(t) :
0 � t � T }, and a valid initial condition, the expectation
value 〈Jz〉�(t) can be viewed as a time-dependent functional
of the measurement record up to time t . We also note that
a maximization of � with respect to its first argument is
equivalent the maximization of a log likelihood ratio (LLR),
λ ≡ ln �. Under the replacements x(t) → y(t), θn → �n(0),
and m(θn,t,x(t)) → √

κ 〈Jz〉�n(t), we have

λ(�1(0),�2(0)) ≡ ln(�)

= √
κ

∫ T

0
(〈Jz〉�1(s) − 〈Jz〉�2(s)) dy(s)

− κ

2

∫ T

0

(〈Jz〉2
�1(s) − 〈Jz〉2

�2(s)

)
ds.

(13)

The MLE we use is then

|�ML〉 = arg max
�1∈C2⊗N

[λ(�1(0),�2(0))] . (14)

In principle, the exact choice of �2(0) is irrelevant for
computing |�ML〉, as the replacement �2(0) → �3(0) changes
λ by a finite additive constant but does not affect where the
maximum occurs. In practice, however, an initial condition
that is radically different from the true one greatly reduces the
numerical stability of Eq. (6). This fact impacts the choice of
reference and the reconstruction algorithm we implement.

IV. ESTIMATING THE STATE OF A PURE QUBIT

As a first step towards understanding the fundamental limits
of QST based on continuous-time measurement and control,
we consider the simplest problem: reconstructing the state of
a pure single qubit. We assume that we are initially given N

qubits, each initialized in an unknown yet pure state |ψ0〉. We
also assume that the total evolution preserves the exchange
symmetry of the system, thus allowing us to restrict our
attention to states that are in the fully symmetric subspace
of the many-body system. The evolution thus preserves the
total collective angular momentum quantum number at its
maximum value J = N/2. Therefore, instead of considering
the entire 2N -dimensional tensor-product Hilbert space, we
are able to restrict our attention to the evolution to the
(d = N + 1)-dimensional exchange-symmetric subspace.

A key ingredient of the protocol is to drive the system with a
control Hamiltonian that ensures that the measurement record
is informationally complete. Following the work of Riofrı́o
et al. [4], we choose a control Hamiltonian, Hc(t), that is
randomized between a set of operators that rapidly generates
the group of SU(2) rotations,

Hc(t) = b(t) · J =
∑

i

b(t) · σ (i)/2, (15)

with

b(t) = π

2 τ

∑
i=1

χ[i−1,i)( t/τ ) ei . (16)

Here {ei} are uniformly sampled directions on the unit
sphere, τ is the transition period, and the indicator function
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χ[a,b)(x) = 1 for x ∈ [a,b) and 0 otherwise. The choice of a
Larmor frequency �b = π/(2τ ) is an attempt to maximize the
information gain; e.g., if ei = ex, then a π/2 rotation is needed
to rotate the unobserved ey component of the collective spin
onto the measurement axis, ez.

For an arbitrary control law, the estimate |�ML〉 in Eq. (14)
does not have an analytic solution and therefore must be
computed numerically. Taking the LLR as the cost function
in the optimization, each evaluation of λ, Eq. (13), requires a
comparison of two conditional states, as observed through their
respective expectation values of Jz. This, in turn, requires an
efficient method for integrating the CSE, Eq. (6), since a typical
minimization algorithm will require many evaluations of λ. In
general, this is a numerically intensive, as the dimension of the
Hilbert space for the collective state in the symmetric Hilbert
space grows as N + 1, and we seek to study the limits for large
N . We can substantially reduce this numerical complexity
by making an approximation on the measurement-induced
dynamics.

To understand the appropriate approximation, let us con-
sider how measurement backaction complicates the descrip-
tion of the dynamics. In general, the state of the symmetric
ensemble of N particles is specified by all distinct sym-
metrized K-body correlation functions of Pauli products,
〈σ (1)

α1
σ (2)

α2
· · · σ (K)

αK
〉sym, where σ (i)

αi
acts on the ith spin with

αi ∈ {x,y,z} and K = 1, . . . ,N . For the special case of a
spin coherent state (SCS), the state is completely specified
only by the one-point correlation functions nα = 〈σα〉: the
Bloch vector of any of the identical qubits. The effect
of measurement of the collective spin is twofold: (i) the
Bloch vector is stochastically “kicked” when conditioned
on the noisy measurement record; and (ii) higher order
correlations (entanglement) are generated between the qubits.
To lowest order, the measurement-induced correlations result
in spin squeezing [17], specified by two-point correlations.
For stronger measurements all correlations become important.
In the absence of any control, the continuous measurement
ultimately becomes projective, yielding a Dicke state (eigen-
state of the collective Jz) as the steady state of a perfect QND
measurement [27].

In the presence of strong randomized controls, the state
evolution is dramatically different. In addition to causing
precession of the mean spin, a transverse magnetic field will
generally rotate the reduced uncertainty of the measured com-
ponent into an orthogonal direction. The subsequent direction
being measured will likely have increased uncertainty, i.e.,
is antisqueezed. This measurement will in turn reduce the
previously increased uncertainty, resulting in at least a partial
cancellation. The ultimate effect is that, with the application
of rapid rotations about random directions, any spin squeezing
produced at early times has a good chance of being undone
at later times, and on average, the state remains close to
an SCS.

An example of this effect is shown in Fig. 2, which contrasts
the conditional evolution of a QND measurement of Jz without
control to a system subjected to 10 π/2 rotations about random
directions (�b = 25πκ) while being continuously measured.
In both simulations we take N = 75 qubits (J = 37.5) initially
prepared in an SCS along x. Figure 2(a) shows the trajectory
that the mean spin takes on the Bloch sphere under the

influence of the controls, both in the absence of a continuous
measurement and when conditioned on the measurement
record in Fig. 2(b), i [solid (blue) line]. As a quantitative
measure of the two-body correlations present in the system,
in Fig. 2(b), ii, we plot the spin-squeezing parameter ξ 2

T ≡
λmin/J

2 [28], where λmin is the minimum eigenvalue of the
matrix G with entries

Gij = N
2 〈JiJj + JjJi〉� − (N − 1)〈Ji〉�〈Jj 〉�. (17)

This particular parameter is qualitatively equivalent to the
concurrence [29], a measure of pairwise entanglement between
qubits. We see that, in the absence of the controls, squeezing
grows monotonically, reaching its maximum value at a final
time κt = 0.2. However, in the presence of the controls
the squeezing does not monotonically increase but, instead,
reaches a maximum value at time κt ≈ 0.1 and then returns to
a value near 0.

We can see how the controls average out the effect of
squeezing and entanglement by plotting the spin-Husimi Q

function at various sample times,

Q(t,ϑ,ϕ) ≡ N + 1

4π
|〈ϑ,ϕ|�(t)〉|2, (18)

where |ϑ,ϕ〉 ≡ |n(ϑ,ϕ)〉⊗N is an SCS whose Bloch vector n
is parameterized by the spherical coordinate angles ϑ and ϕ.
For spin-squeezed states, the Q function takes the form of
an approximately Gaussian distribution, centered at the mean
spin position and with its minor axis orientated in the squeezing
direction. Figure 2(c) shows contour plots of the Q function,
both with and without controls, at times κt0 = 0, κt1 = 0.03,
κt2 = 0.1, and κt3 = 0.2. The Q function in the presence of
controls begins as an unsqueezed SCS and proceeds to rotate
about the z axis, staying roughly near the equator. During
this time it is also being squeezed, as its minor axis has
strong overlap with the measurement axis. This continues until
κt ∼ 0.08, when the controls rotate the mean spin to be near
the −z axis. As it does so, the minor and major axes are also
rotated, so that by time κt = 0.1 the antisqueezed major axis
is almost aligned with the measurement axis. The remainder of
the evolution returns the mean spin to near the equator, in such
a way as to preserve this orientation and subsequently undoes
the accumulated squeezing, as seen in the Q function at the
final time, κt3 = 0.2. This is contrasted with the uncontrolled
evolution, which shows a sequence of increasingly eccentric el-
lipses whose minor axes are always orientated along the z axis.

Given these facts, we propose the ansatz that the exact
conditional state is well approximated by a conditional SCS,
a state that is always a separable product, |�(t)〉 ≈ |n(t)〉⊗N ,
where n(t) is a conditional single-qubit Bloch vector. This
ansatz allows us to extend the continuous-measurement QST
protocol to include the effect of measurement backaction, by
returning an estimate that depends only on the evolution of
a single-body density operator. The direction of the Bloch
vector will evolve under the control Hamiltonian, Eq. (15),
with a stochastic component arising from the measurement
backaction. We make this approximation by deriving the
conditional evolution 〈J〉�(t) under the assumption that all
moments are computed under an SCS approximation. The
equation of motion for 〈J〉�(t) follows from the exact CSE,
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FIG. 2. (Color online) Simulations for N = 75 qubits, initially prepared in an SCS, polarized along x. (a) Trajectory of the mean spin on
the Bloch sphere for the cases of a randomized control Hamiltonian with measurement [solid (dark-blue) line], a control Hamiltonian without
measurement, i.e., κ = 0 [dashed (light-blue) line], and no controls but with measurement [dotted (orange) line]. (b) i: Simulated measurement
records in the presence [solid (blue) line] and absence [dotted (orange) line] of a randomized control Hamiltonian. ii: The amount of spin
squeezing (in dB) generated the presence [solid (blue) line] and absence [dotted (orange) line] of the controls. The squeezing is a measure of the
correlations between qubits generated by the measurement backaction. (c) Conditional spin Q functions for both trajectories taken at sample
times t0, t1, t2, and t3. The random rotations generated by the control Hamiltonian average out the effect of squeezing, leaving the collective
state close to a product SCS.

yielding the Itō equation,

d〈J〉 = b(t) × 〈J〉dt − 1
8κ〈[Jz,[Jz,J]]〉 dt

+ 1
2

√
κ(〈Jz J + JJz〉 − 2〈Jz〉〈J〉) dv(t)

= b(t) × 〈J〉dt − 1
8κ(〈J〉 − ez〈Jz〉) dt

+ 1
2

√
κ(〈Jz J + JJz〉 − 2〈Jz〉〈J〉) dv(t), (19)

where all expectation values are computed with state |�(t)〉.
Under the SCS approximation, 〈J〉 ≈ N

2 n(t) and 〈Jz J +
JJz〉 − 2〈Jz〉〈J〉 ≈ N

2 [ez − 〈σz〉n(t)]. The conditional evo-

lution of the Bloch vector n(t) thus obeys the stochastic
differential equation (SDE),

dn(t) =
(

b(t) × n(t) − 1
8κ(n(t) − z(t) ez)

)
dt

+ 1
2

√
κ (ez − z(t) n(t)) dv(t), (20a)

dv(t) = dy(t) − √
κ N

2 z(t) dt, (20b)

where n ≡ (x,y,z) ≡ (〈σx〉,〈σy〉,〈σz〉). This is the same SDE
we would derive for the conditional evolution of a single qubit,
with the exception that the innovation v(t) expects a signal
scaled by the factor J = N/2. Note that this equation is valid
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for both pure and mixed single-qubit states, a fact we exploit
in our reconstruction algorithm.

To test the quality of this approximation, we compare
the exact evolution of the collective state |�(t)〉, governed
by the CSE, Eq. (6), to that given by the SCS approxi-
mation, |�SCS(t)〉 = |n(t)〉⊗N , governed by Eq. (20). Given
the same SCS initial condition in both cases, we compare
these states in two ways. First, we compute the fidelity
F = |〈�SCS(t)|�(t)〉|2, as a function of time. Second, we
compute the root mean square (RMS) error between 〈Jz〉�(t)

and 〈Jz〉�SCS(t) as defined by the quantity

�zerr(t) ≡
√

〈( 1
J
〈Jz〉�(t) − z(t))2〉ν . (21)

The expectation values have been scaled by the total spin length
J to allow for a comparison between different values of N . This
quantity impacts the performance of the estimator, since any
error in 〈Jz〉 directly impacts the LLR. The ensemble average is
computed for ν = 100 unit vectors uniformly sampled over the
Bloch sphere and uses only a single noise realization per state.

Figure 3 shows this average fidelity, 〈F〉ν , for a variety
of numbers of qubits, N , both with and without 40 π/2
rotations about random directions, for a total measurement
time κT = 0.8. The SCS approximation performs poorly in the
absence of the controls and for large N , showing a worst-case
average fidelity of 〈F〉ν ∼ 0.47 for N = 100. In the presence
of the controls the approximation performs well, maintaining
the fidelity at a level 〈F〉ν > 0.80 for all N tested. The
nonmonotonic decrease in the average fidelity implies that the
controls could be optimized to maximize this value, however,
it is unclear if such an optimization would return an optimal
tomographic estimate. Figures 3(c) and 3(d) show that for all
of the N that we simulated, the SCS approximation tracks
the mean spin with �zerr(t) < 0.1 and that, in the presence
of the controls, �zerr(t) ∼ 0.025. The case N = 1 shows that

FIG. 3. (Color online) Performance of the separable SCS approx-
imation. Average fidelity between the exact state |�(t)〉 and the SCS
|n(t)〉⊗N as a function of time (a) for no controls and (b) applying
40 π/2 rotations over a time κT = 0.8. RMS error �zerr(t) as defined
in Eq. (21) is plotted (c) for no controls and (d) with the same
control law as in (b). The average is over ν = 100 random initial
unit vectors, uniformly sampled over the Bloch sphere, with a single
noise realization per state. We make these comparisons for N = 1,
25, 50, 75, and 100 qubits, plotted with a correspondingly increasing
contrast and decreasing fidelity.

Eq. (20) exactly reproduces the single-qubit evolution, up to
numerical precision.

V. NUMERIC SIMULATIONS

Armed with the SCS approximation we are able to effi-
ciently compute an approximate version of the LLR given
in Eq. (13). We now test the performance of our tomographic
procedure via a series of numerical simulations. In the absence
of a closed-form solution to Eqs. (13) and (20), we must also
find |�ML〉 through a numerical search. While we may choose
from any number of algorithms (e.g., gradient assent), we use a
particularly simple procedure here. As the Bloch sphere is such
a small search space, we simply sample a suitably dense set of
initial conditions and then choose as our estimate the element
that maximizes λ. We operate with a density of samples
such that the average infidelity between nearest neighbors is
∼6 × 10−4. This ensures that we will obtain an estimate that
is sufficiently close to the true state. As an example, given
N = 100 qubits, the optimum POVM bound sets an average
infidelity of 0.01 [18], implying that any deficits in our proce-
dure should not be attributed to the finite number of samples.

In practice, we need to consider an additional step in our
protocol. A CSE with an informationally complete measure-
ment record is, in principle, stable [30]. This means that, given
a measurement record generated from an initial state |�(0)〉,
it is possible to integrate a CSE from any initial condition
|�(0)′〉 �= |�(0)〉, such that |�(t)′〉 → |�(t)〉 as t → ∞. In a
sense, this means that the CSE is self-correcting for the initial
misinformation. Unfortunately, we find that the numerical
stability of both Eqs. (6) and (20) is quite poor when the
initial condition is nearly orthogonal to the true state. This
affects our reconstruction procedure because an instability in
computing either the candidate or the reference state can result
in λ reaching arbitrarily large or small values. To correct for
this issue, we compute λ first for mixed initial conditions and
then for a spread of pure states in the direction of the most
likely mixed state. This two-step procedure greatly improves
the numerical stability because a mixed state polarized in a
direction orthogonal to the true state still has some overlap
with that state.

In the first step, we use M1 = 250 isotropically distributed
mixed states, whose Bloch vectors form the set N1 = {nm ∈
R3 : ‖nm‖ = 3/4, m = 1, . . . ,M1}. To identify an acceptable
pure reference state, we find the mixed-state sample n� ∈ N1

that maximizes the approximate LLR,

λscs(nm,nr ) =
√

κN

2

∫ T

0
[zm(s) − zr (s)] dy(s)

− κN2

8

∫ T

0
[zm(s)2 − zr (s)2] ds, (22)

where we choose the unbiased reference initial condition
‖nr (0)‖ = 0. From this mixed state, we then define the
new reference vector n′

r ≡ n�/‖n�‖ and uniformly sample
M2 = 250 pure states within a neighborhood of this vector.
Specifically, we form the setN2 = {nm ∈ R3 : ‖nm‖ = 1, nm ·
n′

r � cos(π/4),m = 1, . . . ,M2}. We then report as an estimate
the single-qubit state |nML〉 whose Bloch vector nML ∈ N2

032113-7
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FIG. 4. (Color online) Typical sample distributions. (a) The set
N1 shown inside the unit sphere for M1 = 250 and ‖nm(0)‖ =
3/4. The point that maximized λscs relative to nr (0) = 0, given a
measurement record made with N = 75 qubits, is circled (in green).
(b) The resample set N2 for M2 = 250 is plotted in blue on the Bloch
sphere, with the maximum angular deviation of π/4 indicated by the
dashed line. Also shown is the reference point n′

r [(green) square]
and the true initial state [(magenta) star]. The resample point that
maximizes λscs is circled (in red).

maximizes λscs(nm,n′
r ). Figure 4 shows a typical realization of

both sample sets, for a simulation over N = 75 qubits.
In order to characterize the performance of our proto-

col, we perform a series of numerical simulations for a
variety of N . In each simulation we wish to compare the
average infidelity between our estimate and the true input
state, 1 − 〈F〉ν , averaged over uniformly sampled inputs and
measurement realizations. We also compare our protocol to
two additional measurement schemes. The first comparison is
to the fundamental bound set by the optimum POVM, with
1 − 〈F〉opt = 1/(N + 2) [18]. The second comparison is to
an alternative model of the continuous measurement, one that
completely ignores measurement backaction. In other words,
we wish to compare the above model to a model where the
measurement record is approximated by

ỹ(t) ≈ w(t) +
√

κN

2

∫ t

0
〈n(0)|σz(s)|n(0)〉 ds, (23)

where σz(s) is the Heisenberg evolved Pauli z operator and w(t)
is a Wiener process. This model is equivalent to the γdiss = 0
limit of the single-atom density matrix ρ̃ defined in Eq. (5).
While such a model is a good approximation when the total
measurement time is very short compared to 1/κ , we expect
the effect of measurement backaction to have a significant
impact on our estimator.

To make a fair comparison, we use a nearly identical
algorithm in the backaction-free case as in the estimator
described above. In this case we no longer have a problem with
the numerical stability of our estimator because the Heisenberg
equation of motion for σz is independent of the state. Therefore,
we need not perform a two-step sampling procedure. We thus
uniformly sample M pure Bloch vectors with a density equal
to the final density of samples that we used in the procedure
above, which requires M = 1700. We then choose the sampled
state that maximizes a backaction-free version of the LLR,
where the conditional expectation values 〈Jz〉�i (t) are replaced
by N 〈ni |σz(t)|ni〉/2, with the first sample n1 serving as the
reference.

FIG. 5. (Color online) Average quantum state reconstruction in-
fidelities (log-log axes) for different estimators. Circles show the
performance of the MLE based on the LLR, Eq. (14), with the SCS
approximation to the dynamical evolution, Eq. (22). A power-law fit
to these data yields 1 − 〈F〉ν ∝ N−0.89, which is close to the bound
set by the optimal POVM, 1 − 〈F〉ν ≈ N−1 (dotted line). Diamonds
show the performance of an estimator that assumes a backaction-free
measurement model given by Eq. (23) and achieves a power-law
scaling, 1 − 〈F〉ν ∝ N−0.60. Error bars show a standard error of
±√

Var[1 − F]/ν.

Figure 5 shows the results of numerical simulations for
our reconstruction procedure with and without backaction.
Plotted on a log-log scale is the average infidelity, 1 − 〈F〉ν ,
for N = 25, 40, 55, 70, 85, and 100 qubits. For every N ,
we average over ν = 1000 initial single-qubit states, with a
single measurement realization per state. Every simulation
used the same control law, with 40 randomized π/2 rotations,
as well as a final time κT = 0.8. Also shown are linear-least-
squares fits to a power law, aNb. With backaction, the best-fit
parameters are a = 0.69 ± 0.08 and b = −0.89 ± 0.03, and
without backaction, a = 0.29 ± 0.06 and b = −0.62 ± 0.05.
These exponents are compared to the optimal scaling of 1/N .
By implementing the SCS approximation, we have introduced
�5% systematic errors in computing 〈Jz〉, which propagates
into the approximate LLR, λscs, ultimately contributing to the
suboptimal scaling.

The performance of the backaction-free estimator is best
understood by considering not only the final-state reconstruc-
tion given the entire measurement record, but also the family
of estimates generated by using data up a time 0 � t � T . The
stability of the CSE implies that for initial conditions �1(0) �=
�2(0) we have the convergence 〈Jz〉�1(t) − 〈Jz〉�2(t) → 0 as
t → ∞. The effect of this is that the LLR will either reach or
asymptotically approach a steady-state value at long times.
This convergence is necessarily implemented through the
innovation, which occurs more rapidly for larger N , as
follows from Eq. (20b). However, the unitary evolution in
the backaction-free scheme is unable to implement such a
convergence, and thus the LLR will never reach steady state.
This ultimately biases the estimate away from the true state at
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long times, which can been seen in the poor performance of
the backaction-free estimate for large N .

VI. SUMMARY AND OUTLOOK

We have studied a protocol that performs QST using a single
continuous measurement record of an ensemble of identical
copies when the system is subjected to dynamical control and
measurement backaction. We have considered the simplest
case: estimation of the direction of the Bloch vector of a pure
qubit in the absence of decoherence and systematic errors. This
allowed us to focus on the effects of measurement backaction
that complicate the estimator due to the nonlinearity of the
conditional state evolution and the many-body nature of the
dynamics induced by the entangling QND measurement.

We formulated an ML estimator and showed that it is
possible to obtain a high-fidelity reconstruction of an initial
SCS using only a single realization of a continuous collective
measurement and dynamical control. Numerical simulations
indicate that this estimate nearly reaches the bound set by the
optimal POVM. If we fail to include the effect of measurement
backaction in the conditional dynamics of the mean spin
direction, an otherwise equivalent estimator becomes biased
towards a poorer estimate at long times.

A key feature of our estimator was a simplification of
the dynamical model in which the effects of measurement
backaction act solely to induce random kicks in the direction
of the Bloch vector while the entangling effects of the QND
measure are small. This followed from the fact that the
random rotations of the Bloch vector generated by the control

Hamiltonian acted to average out the effects of squeezing as
well as any higher-order correlations between the qubits. Such
an approximation should also follow for ensembles of higher
dimensional d > 2 qudits, and our protocol should be easily
extended to reconstruction of such qudits. In this case we
would require SU(d) controllability, as has been demonstrated
for atomic spins [6]. The estimator would then be based on the
stochastic evolution of a generalized Bloch vector, analogous
to the qubit case considered here.

The next natural extension of our protocol is to include
two-point atom-atom correlations in our estimator. This could
allow us to improve the fidelity of our estimator and generalize
the class of states we can reconstruct, including spin-squeezed
states or other Gaussian states described by two-atom cor-
relations. Going beyond two-body correlations, the matrix
product state formalism provides a natural framework for
studying many-body effects [31,32]. The application of the
matrix product state ansatz to ML tomography has been
studied [33], with good results. By translating this to the
continuous measurement setting discussed here, one might be
able to extract many-body correlations efficiently and robustly,
of particular interest in the context of quantum simulators [34].
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