1,909 research outputs found
Chronic diabetic peripheral neuropathic pain: psychometric properties of pain and physical function outcome measures
© 2018, © 2018 Informa UK Limited, trading as Taylor & Francis Group. Background: Diabetic peripheral neuropathy (DPN) not only produces severe pain, tingling, and numbness sensation in the involved limbs, but also limits physical function due to loss of sensation. There are no recommended methods for clinical situations to measure these signs and symptoms. Studies with high methodological quality use the modified Brief Pain Inventory for Diabetic Peripheral Neuropathic pain (mBPI-DPN) scale and the short form Screening of Activity Limitations and Safety Awareness (sSALSA) scale for measuring these symptoms in DPN population. In order to capture a real change in the variables of interest, the psychometric properties of that measure should be within acceptable limits. As these two measures were not assessed for all of the psychometric properties, there was a need for further evaluation. Methods: Data were collected (n = 38 patients) in a longitudinal cohort study. Test–retest reliability (0–4 weeks) and Responsiveness- Minimal Clinically Important Difference (MCID) (0–12 weeks) were calculated between two sessions. Convergent validity was assessed (between mBPI-DPN pain interference and sSALSA scale). Results: Both measures demonstrated acceptable test–retest reliability (mBPI-DPN scale: ICC = 0.61, SEM = 12.92; the sSALSA scale: ICC = 0.81, SEM = 4.88) and convergent validity (Spearman’s correlation coefficient r = 0.62). The computational methods used in different methodologies to calculate MCID for the mBPI-DPN and the sSALSA scale were varied, hence the magnitude of derived MCID scores also varied. Conclusions: Our study have provided evidence to add to the scientific basis surrounding the use of mBPI-DPN and sSALSA scales in DPN population, but standardization of these measures in a larger population is required
Genetic Algorithm with Optimal Recombination for the Asymmetric Travelling Salesman Problem
We propose a new genetic algorithm with optimal recombination for the
asymmetric instances of travelling salesman problem. The algorithm incorporates
several new features that contribute to its effectiveness: (i) Optimal
recombination problem is solved within crossover operator. (ii) A new mutation
operator performs a random jump within 3-opt or 4-opt neighborhood. (iii)
Greedy constructive heuristic of W.Zhang and 3-opt local search heuristic are
used to generate the initial population. A computational experiment on TSPLIB
instances shows that the proposed algorithm yields competitive results to other
well-known memetic algorithms for asymmetric travelling salesman problem.Comment: Proc. of The 11th International Conference on Large-Scale Scientific
Computations (LSSC-17), June 5 - 9, 2017, Sozopol, Bulgari
Linear scleroderma as a rare cause of enophthalmos: a case report
© 2007 Fernando et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
Unified force law for granular impact cratering
Experiments on the low-speed impact of solid objects into granular media have
been used both to mimic geophysical events and to probe the unusual nature of
the granular state of matter. Observations have been interpreted in terms of
conflicting stopping forces: product of powers of projectile depth and speed;
linear in speed; constant, proportional to the initial impact speed; and
proportional to depth. This is reminiscent of high-speed ballistics impact in
the 19th and 20th centuries, when a plethora of empirical rules were proposed.
To make progress, we developed a means to measure projectile dynamics with 100
nm and 20 us precision. For a 1-inch diameter steel sphere dropped from a wide
range of heights into non-cohesive glass beads, we reproduce prior observations
either as reasonable approximations or as limiting behaviours. Furthermore, we
demonstrate that the interaction between projectile and medium can be
decomposed into the sum of velocity-dependent inertial drag plus
depth-dependent friction. Thus we achieve a unified description of low-speed
impact phenomena and show that the complex response of granular materials to
impact, while fundamentally different from that of liquids and solids, can be
simply understood
Well-Water Consumption and Parkinson’s Disease in Rural California
IntroductionInvestigators have hypothesized that consuming pesticide-contaminated well water plays a role in Parkinson's disease (PD), and several previous epidemiologic studies support this hypothesis.ObjectivesWe investigated whether consuming water from private wells located in areas with documented historical pesticide use was associated with an increased risk of PD.MethodsWe employed a geographic information system (GIS)-based model to estimate potential well-water contamination from agricultural pesticides among 368 cases and 341 population controls enrolled in the Parkinson's Environment and Genes Study (PEG). We separately examined 6 pesticides (diazinon, chlorpyrifos, propargite, paraquat, dimethoate, and methomyl) from among 26 chemicals selected for their potential to pollute groundwater or for their interest in PD, and because at least 10% of our population was exposed to them.ResultsCases were more likely to have consumed private well water and to have consumed it on average 4.3 years longer than controls (p = 0.02). High levels of possible well-water contamination with methomyl [odds ratio (OR) = 1.67; 95% confidence interval (CI), 1.00-2.78]), chlorpyrifos (OR = 1.87; 95% CI, 1.05-3.31), and propargite (OR = 1.92; 95% CI, 1.15-3.20) resulted in approximately 70-90% increases in relative risk of PD. Adjusting for ambient pesticide exposures only slightly attenuated these increases. Exposure to a higher number of water-soluble pesticides and organophosphate pesticides also increased the relative risk of PD.ConclusionOur study, the first to use agricultural pesticide application records, adds evidence that consuming well water presumably contaminated with pesticides may play a role in the etiology of PD
‘Warrant’ revisited: Integrating mathematics teachers’ pedagogical and epistemological considerations into Toulmin’s model for argumentation
In this paper, we propose an approach to analysing teacher arguments that takes into account field dependence—namely, in Toulmin’s sense, the dependence of warrants deployed in an argument on the field of activity to which the argument relates. Freeman, to circumvent issues that emerge when we attempt to determine the field(s) that an argument relates to, proposed a classification of warrants (a priori, empirical, institutional and evaluative). Our approach to analysing teacher arguments proposes an adaptation of Freeman’s classification that distinguishes between: epistemological and pedagogical a priori warrants, professional and personal empirical warrants, epistemological and curricular institutional warrants, and evaluative warrants. Our proposition emerged from analyses conducted in the course of a written response and interview study that engages secondary mathematics teachers with classroom scenarios from the mathematical areas of analysis and algebra. The scenarios are hypothetical, grounded on seminal learning and teaching issues, and likely to occur in actual practice. To illustrate our proposed approach to analysing teacher arguments here, we draw on the data we collected through the use of one such scenario, the Tangent Task. We demonstrate how teacher arguments, not analysed for their mathematical accuracy only, can be reconsidered, arguably more productively, in the light of other teacher considerations and priorities: pedagogical, curricular, professional and personal
Otodental syndrome
The otodental syndrome also named otodental dysplasia, is characterised by a striking dental phenotype known as globodontia, associated with sensorineural high frequency hearing loss and eye coloboma. Globodontia occurs in both primary and permanent dentition, affecting canine and molar teeth (i.e. enlarged bulbous malformed posterior teeth with almost no discernable cusps or grooves). The condition appears to be inherited in an autosomal dominant mode, although sporadic cases have been reported. It is a rare disease, a few families have been described in the literature. In the British family, the locus for oculo-oto-dental syndrome was mapped to 20q13.1 within a 12-cM critical chromosomal region. Dental management is complex, interdisciplinary and will include regular follow up, scheduled teeth extraction and orthodontic treatment. Hearing checks and, if necessary, hearing aids are mandatory, as well as eye examination and ad hoc treatment if necessary
Off-trial evaluation of bisphosphonates in patients with metastatic breast cancer
BACKGROUND: Bisphosphonate therapy has been readily accepted as standard of care for individuals with bone metastases from breast cancer. In this study we determined whether the proportion of patients experiencing a skeletal related event (SRE) in a clinical practice population was similar to that observed in phase III randomized controlled studies. METHODS: A retrospective chart review was conducted of 110 patients receiving intravenous bisphosphonates for advanced breast cancer. The proportion of patients experiencing at least one SRE after 12 months of therapy was determined. SRE included vertebral or non-vertebral fracture, cord compression, surgery and/or radiotherapy to bone. RESULTS: The proportion of patients who had an SRE was 30% (28 individuals) and the median time to first event was greater than 350 days. Non-vertebral events and radiotherapy were the most frequent type of SRE, while cord compression and hypercalcaemia were rare (1%). Most patients in the study had bone-only disease (58.2%) and most had multiple bone lesions. In the first 12 months the mean duration of exposure to intravenous bisphosphonates was 261 days and most patients remained on treatment until just before death (median 27 days). CONCLUSION: This study suggests that the rate of clinically relevant SREs is substantially lower than the event rate observed in phase III clinical trials. We attribute this lower rate to observational bias. In the clinical trial setting it is possible that over-detection of skeletal events occurs due to the utilisation of regular skeletal survey or radionucleotide bone scan, whereas these procedures are not routine in clinical practice. Phase IV observational studies need to be conducted to determine the true benefits of bisphosphonate therapy in order to implement rationale use of bisphosphonates
What Drives the Intensification of Mesoscale Convective Systems over the West African Sahel under Climate Change?
Extreme rainfall is expected to increase under climate change, carrying potential socioeconomic risks. However, the magnitude of increase is uncertain. Over recent decades, extreme storms over the West African Sahel have increased in frequency, with increased vertical wind shear shown to be a cause. Drier midlevels, stronger cold pools, and increased storm organization have also been observed. Global models do not capture the potential effects of lower- to midtropospheric wind shear or cold pools on storm organization since they parameterize convection. Here we use the first convection-permitting simulations of African climate change to understand how changes in thermodynamics and storm dynamics affect future extreme Sahelian rainfall. The model, which simulates warming associated with representative concentration pathway 8.5 (RCP8.5) until the end of the twenty-first century, projects a 28% increase of the extreme rain rate of MCSs. The Sahel moisture change on average follows Clausius–Clapeyron scaling, but has regional heterogeneity. Rain rates scale with the product of time-of-storm total column water (TCW) and in-storm vertical velocity. Additionally, prestorm wind shear and convective available potential energy both modulate in-storm vertical velocity. Although wind shear affects cloud-top temperatures within our model, it has no direct correlation with precipitation rates. In our model, projected future increase in TCW is the primary explanation for increased rain rates. Finally, although colder cold pools are modeled in the future climate, we see no significant change in near-surface winds, highlighting avenues for future research on convection-permitting modeling of storm dynamics
Climate change adaptation, flood risks and policy coherence in integrated water resources management in England
Integrated water resources management (IWRM) assumes coherence between cognate aspects of water governance at the river basin scale, for example water quality, energy production and agriculture objectives. But critics argue that IWRM is often less ‘integrated’ in practice, raising concerns over inter-sectoral coherence between implementing institutions. One increasingly significant aspect of IWRM is adaptation to climate change-related risks, including threats from flooding, which are particularly salient in England. Although multiple institutional mechanisms exist for flood risk management (FRM), their coherence remains a critical question for national adaptation. This paper therefore (1) maps the multi-level institutional frameworks determining both IWRM and FRM in England; (2) examines their interaction via various inter-institutional coordinating mechanisms; and (3) assesses the degree of coherence. The analysis suggests that cognate EU strategic objectives for flood risk assessment demonstrate relatively high vertical and horizontal coherence with river basin planning. However, there is less coherence with flood risk requirements for land-use planning and national flood protection objectives. Overall, this complex governance arrangement actually demonstrates de-coherence over time due to ongoing institutional fragmentation. Recommendations for increasing IWRM coherence in England or re-coherence based on greater spatial planning and coordination of water-use and land-use strategies are proposed
- …