32 research outputs found

    The Int7G24A variant of transforming growth factor-beta receptor type I is a risk factor for colorectal cancer in the male Spanish population: a case-control study

    Get PDF
    Background: The Int7G24A variant of transforming growth factor-beta receptor type I (TGFBR1) has been shown to increase the risk for kidney, ovarian, bladder, lung and breast cancers. Its role in colorectal cancer (CRC) has not been established. The aims of this study were to assess the association of TGFBR1*Int7G24A variant with CRC occurrence, patient age, gender, tumour location and stage. Methods: We performed a case-control study with 504 cases of sporadic CRC; and 504 non-cancerous age, gender and ethnically matched controls. Genotyping analysis was performed using allelic discrimination assay by real time PCR. Results: The Int7G24A variant was associated with increased CRC incidence in an additive model of inheritance (P for trend = 0.005). No significant differences were found between Int7G24A genotypes and tumour location or stage. Interestingly, the association of the Int7G24A variant with CRC risk was significant in men (odds ratio 4.10 with 95% confidence intervals 1.41-11.85 for homozygous individuals; P for trend = 0.00023), but not in women. We also observed an increase in susceptibility to CRC for individuals aged less than 70 years. Conclusion: Our data suggest that the Int7G24A variant represents a risk factor for CRC in the male Spanish population.Research supported in part by grants from the Generalitat Valenciana in Spain (AP106/06) and the Biomedical Research Foundation from the Hospital of Elche, Spain (FIBElx-02/2007). T.M-B is recipient of a fellowship from the Spanish Society of Medical Oncology (SEOM)

    Discovery of a Glucocorticoid Receptor (GR) Activity Signature Using Selective GR Antagonism in ER-Negative Breast Cancer

    Get PDF
    Purpose: Although high glucocorticoid receptor (GR) expression in early-stage estrogen receptor (ER)-negative breast cancer is associated with shortened relapse-free survival (RFS), how associated GR transcriptional activity contributes to aggressive breast cancer behavior is not well understood. Using potent GR antagonists and primary tumor gene expression data, we sought to identify a tumor-relevant gene signature based on GR activity that would be more predictive than GR expression alone. Experimental Design: Global gene expression and GR ChIP-sequencing were performed to identify GR-regulated genes inhibited by two chemically distinct GR antagonists, mifepristone and CORT108297. Differentially expressed genes from MDA-MB-231 cells were cross-evaluated with significantly expressed genes in GR-high versus GR-low ER-negative primary breast cancers. The resulting subset of GR-targeted genes was analyzed in two independent ER-negative breast cancer cohorts to derive and then validate the GR activity signature (GRsig). Results: Gene expression pathway analysis of glucocorticoid-regulated genes (inhibited by GR antagonism) revealed cell survival and invasion functions. GR ChIP-seq analysis demonstrated that GR antagonists decreased GR chromatin association for a subset of genes. A GRsig that comprised n = 74 GR activation-associated genes (also reversed by GR antagonists) was derived from an adjuvant chemotherapy-treated Discovery cohort and found to predict probability of relapse in a separate Validation cohort (HR = 1.9; P = 0.012). Conclusions: The GRsig discovered herein identifies highrisk ER-negative/GR-positive breast cancers most likely to relapse despite administration of adjuvant chemotherapy. Because GR antagonism can reverse expression of these genes, we propose that addition of a GR antagonist to chemotherapy may improve outcome for these high-risk patients. (C) 2018 AACR

    Identification and Characterization of Nucleolin as a COUP-TFII Coactivator of Retinoic Acid Receptor β Transcription in Breast Cancer Cells

    Get PDF
    The orphan nuclear receptor COUP-TFII plays an undefined role in breast cancer. Previously we reported lower COUP-TFII expression in tamoxifen/endocrine-resistant versus sensitive breast cancer cell lines. The identification of COUP-TFII-interacting proteins will help to elucidate its mechanism of action as a transcriptional regulator in breast cancer.FLAG-affinity purification and multidimensional protein identification technology (MudPIT) identified nucleolin among the proteins interacting with COUP-TFII in MCF-7 tamoxifen-sensitive breast cancer cells. Interaction of COUP-TFII and nucleolin was confirmed by coimmunoprecipitation of endogenous proteins in MCF-7 and T47D breast cancer cells. In vitro studies revealed that COUP-TFII interacts with the C-terminal arginine-glycine repeat (RGG) domain of nucleolin. Functional interaction between COUP-TFII and nucleolin was indicated by studies showing that siRNA knockdown of nucleolin and an oligonucleotide aptamer that targets nucleolin, AS1411, inhibited endogenous COUP-TFII-stimulated RARB2 expression in MCF-7 and T47D cells. Chromatin immunoprecipitation revealed COUP-TFII occupancy of the RARB2 promoter was increased by all-trans retinoic acid (atRA). RARβ2 regulated gene RRIG1 was increased by atRA and COUP-TFII transfection and inhibited by siCOUP-TFII. Immunohistochemical staining of breast tumor microarrays showed nuclear COUP-TFII and nucleolin staining was correlated in invasive ductal carcinomas. COUP-TFII staining correlated with ERα, SRC-1, AIB1, Pea3, MMP2, and phospho-Src and was reduced with increased tumor grade.Our data indicate that nucleolin plays a coregulatory role in transcriptional regulation of the tumor suppressor RARB2 by COUP-TFII

    Detection of in situ mammary cancer in a transgenic mouse model: in vitro and in vivo MRI studies demonstrate histopathologic correlation.

    No full text
    Improving the prevention and detection of preinvasive ductal carcinoma in situ (DCIS) is expected to lower both morbidity and mortality from breast cancer. Transgenic mouse models can be used as a 'test bed' to develop new imaging methods and to evaluate the efficacy of candidate preventive therapies. We hypothesized that despite its microscopic size, early murine mammary cancer, including DCIS, might be accurately detected by MRI. C3(1) SV40 TAg female mice (n=23) between 10 and 18 weeks of age were selected for study. Eleven mice were subjected to in vitro imaging using a T(2)-weighted spin echo sequence and 12 mice were selected for in vivo imaging using a T(1)-weighted gradient echo, a T(2)-weighted spin echo and high spectral and spatial resolution imaging sequences. The imaged glands were carefully dissected, formalin fixed and paraffin embedded, and then HandE stained sections were obtained. The ratio of image-detected versus histologically detected cancers was obtained by reviewing the MR images and HandE sections independently and using histology as the gold standard. MR images were able to detect 12/12 intramammary lymph nodes, 1/1 relatively large (approximately 5 mm) tumor, 17/18 small (approximately 1 mm) tumors and 13/16 ducts distended with DCIS greater than 300 microm. Significantly, there were no false positives--i.e., image detection always corresponded to a histologically detectable cancer in this model. These results indicate that MR imaging can reliably detect both preinvasive in situ and early invasive mammary cancers in mice with high sensitivity. This technology is an important step toward the more effective use of non-invasive imaging in pre-clinical studies of breast cancer prevention, detection and treatment

    Detection of in situ mammary cancer in a transgenic mouse model: in vitro and in vivo MRI studies demonstrate histopathologic correlation.

    No full text
    Improving the prevention and detection of preinvasive ductal carcinoma in situ (DCIS) is expected to lower both morbidity and mortality from breast cancer. Transgenic mouse models can be used as a 'test bed' to develop new imaging methods and to evaluate the efficacy of candidate preventive therapies. We hypothesized that despite its microscopic size, early murine mammary cancer, including DCIS, might be accurately detected by MRI. C3(1) SV40 TAg female mice (n=23) between 10 and 18 weeks of age were selected for study. Eleven mice were subjected to in vitro imaging using a T(2)-weighted spin echo sequence and 12 mice were selected for in vivo imaging using a T(1)-weighted gradient echo, a T(2)-weighted spin echo and high spectral and spatial resolution imaging sequences. The imaged glands were carefully dissected, formalin fixed and paraffin embedded, and then HandE stained sections were obtained. The ratio of image-detected versus histologically detected cancers was obtained by reviewing the MR images and HandE sections independently and using histology as the gold standard. MR images were able to detect 12/12 intramammary lymph nodes, 1/1 relatively large (approximately 5 mm) tumor, 17/18 small (approximately 1 mm) tumors and 13/16 ducts distended with DCIS greater than 300 microm. Significantly, there were no false positives--i.e., image detection always corresponded to a histologically detectable cancer in this model. These results indicate that MR imaging can reliably detect both preinvasive in situ and early invasive mammary cancers in mice with high sensitivity. This technology is an important step toward the more effective use of non-invasive imaging in pre-clinical studies of breast cancer prevention, detection and treatment
    corecore