19,564 research outputs found
Principles of Antifragile Software
The goal of this paper is to study and define the concept of "antifragile
software". For this, I start from Taleb's statement that antifragile systems
love errors, and discuss whether traditional software dependability fits into
this class. The answer is somewhat negative, although adaptive fault tolerance
is antifragile: the system learns something when an error happens, and always
imrpoves. Automatic runtime bug fixing is changing the code in response to
errors, fault injection in production means injecting errors in business
critical software. I claim that both correspond to antifragility. Finally, I
hypothesize that antifragile development processes are better at producing
antifragile software systems.Comment: see https://refuses.github.io
Space Laser Power Transmission System Studies
Power transmission by laser technique is addressed. Space to Earth and space to space configurations are considered
Report of the Higgs Working Group of the Tevatron Run 2 SUSY/Higgs Workshop
This report presents the theoretical analysis relevant for Higgs physics at
the upgraded Tevatron collider and documents the Higgs Working Group
simulations to estimate the discovery reach in Run 2 for the Standard Model and
MSSM Higgs bosons. Based on a simple detector simulation, we have determined
the integrated luminosity necessary to discover the SM Higgs in the mass range
100-190 GeV. The first phase of the Run 2 Higgs search, with a total integrated
luminosity of 2 fb-1 per detector, will provide a 95% CL exclusion sensitivity
comparable to that expected at the end of the LEP2 run. With 10 fb-1 per
detector, this exclusion will extend up to Higgs masses of 180 GeV, and a
tantalizing 3 sigma effect will be visible if the Higgs mass lies below 125
GeV. With 25 fb-1 of integrated luminosity per detector, evidence for SM Higgs
production at the 3 sigma level is possible for Higgs masses up to 180 GeV.
However, the discovery reach is much less impressive for achieving a 5 sigma
Higgs boson signal. Even with 30 fb-1 per detector, only Higgs bosons with
masses up to about 130 GeV can be detected with 5 sigma significance. These
results can also be re-interpreted in the MSSM framework and yield the required
luminosities to discover at least one Higgs boson of the MSSM Higgs sector.
With 5-10 fb-1 of data per detector, it will be possible to exclude at 95% CL
nearly the entire MSSM Higgs parameter space, whereas 20-30 fb-1 is required to
obtain a 5 sigma Higgs discovery over a significant portion of the parameter
space. Moreover, in one interesting region of the MSSM parameter space (at
large tan(beta)), the associated production of a Higgs boson and a b b-bar pair
is significantly enhanced and provides potential for discovering a non-SM-like
Higgs boson in Run 2.Comment: 185 pages, 124 figures, 55 table
Dynamical Quantum Phase Transitions in the Transverse Field Ising Model
A phase transition indicates a sudden change in the properties of a large
system. For temperature-driven phase transitions this is related to
non-analytic behavior of the free energy density at the critical temperature:
The knowledge of the free energy density in one phase is insufficient to
predict the properties of the other phase. In this paper we show that a close
analogue of this behavior can occur in the real time evolution of quantum
systems, namely non-analytic behavior at a critical time. We denote such
behavior a dynamical phase transition and explore its properties in the
transverse field Ising model. Specifically, we show that the equilibrium
quantum phase transition and the dynamical phase transition in this model are
intimately related.Comment: 4+4 pages, 4 figures, Appendix adde
Neutron activation analysis traces copper artifacts to geographical point of origin
Impurities remaining in the metallic copper are identified and quantified by spectrographic and neutron activation analysis. Determination of the type of ore used for the copper artifact places the geographic point of origin of the artifact
Late movement of basin-edge lobate scarps on Mercury
Basin-edge lobate scarps are a sub-type of tectonic shortening structure on the surface of Mercury that have formed at the edge of volcanic units that fill or partly fill impact basins. We have performed a global survey of these features and find that they are widespread in basins across the planet. We obtained model ages from crater size–frequency distribution analysis for a subset of our surveyed basins, for both the smooth plains infill and for the last resolvable tectonic activity on the associated basin-edge scarps. Our results indicate that some of these lobate scarps were still accumulating strain in the late Mansurian (approximately 1 Ga). From a photogeological assessment, we find that the orientations of these basin-edge lobate scarps are similar to those reported for the global population of lobate scarps in earlier studies, appearing to align ∼north–south at low latitudes and ∼east–west at higher latitudes. However, reassessing these landforms’ orientation with artificially illuminated topographic data does not allow us to rule out the effect of illumination bias. We propose that these landforms, the result of crustal shortening in response to global contraction, formed along the interface between the basin floor and the smooth plains unit, which acted as a mechanical discontinuity along which shortening strains were concentrated
Entropy and Entanglement in Quantum Ground States
We consider the relationship between correlations and entanglement in gapped
quantum systems, with application to matrix product state representations. We
prove that there exist gapped one-dimensional local Hamiltonians such that the
entropy is exponentially large in the correlation length, and we present strong
evidence supporting a conjecture that there exist such systems with arbitrarily
large entropy. However, we then show that, under an assumption on the density
of states which is believed to be satisfied by many physical systems such as
the fractional quantum Hall effect, that an efficient matrix product state
representation of the ground state exists in any dimension. Finally, we comment
on the implications for numerical simulation.Comment: 7 pages, no figure
A Thin HI Circumnuclear Disk in NGC4261
We report on high sensitivity, spectral line VLBI observations of the HI
absorption feature in the radio galaxy NGC4261. Although absorption is only
detectable on the most sensitive baseline, it can be unambiguously associated
with the counterjet and is interpreted to originate in a thin atomic
circumnuclear disk. This structure is probably a continuation of the dusty
accretion disk inferred from HST imaging, which could be feeding the massive
black hole. HI column densities in front of the counterjet of the order of
10^{21}(T_sp/100 K) cm^{-2} are derived, consistent with X-ray data and VLBI
scale free-free absorption. The data presented here are the result of the first
scientific project processed on the new EVN MkIV data processor.Comment: 4 pages, 3 postscript figures, Astronomy and Astrophysics Letters, in
pres
- …