25 research outputs found

    S-nitrosylation of the thioredoxin-like domains of protein disulphide isomerase and its role in neurodegenerative conditions

    Get PDF
    Correct protein folding and inhibition of protein aggregation is facilitated by a cellular "quality control system" that engages a network of protein interactions including molecular chaperones and the ubiquitin proteasome system. Key chaperones involved in these regulatory mechanisms are the protein disulfide isomerases (PDI) and their homologs, predominantly expressed in the endoplasmic reticulum of most tissues. Redox changes that disrupt ER homeostasis can lead to modification of these enzymes or chaperones with the loss of their proposed neuroprotective role resulting in an increase in protein misfolding. Misfolded protein aggregates have been observed in several disease states and are considered to play a pivotal role in the pathogenesis of neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral sclerosis. This review will focus on the importance of the thioredoxin-like CGHC active site of PDI and how our understanding of this structural motif will play a key role in unraveling the pathogenic mechanisms that underpin these neurodegenerative conditions

    Divergent metabolic regulation of autophagy and mTORC1-early events in Alzheimer's disease?

    Get PDF
    © 2017 Shafei, Harris and Conway. Alzheimer's disease (AD) is a progressive disease associated with the production and deposition of amyloid β-peptide (Aβ) aggregates and neurofibrillary tangles, which lead to synaptic and neuronal damage. Reduced autophagic flux has been widely associated with the accumulation of autophagic vacuoles (AV), which has been proposed to contribute to aggregate build-up observed in AD. As such, targeting autophagy regulation has received wide review, where an understanding as to how this mechanism can be controlled will be important to neuronal health. The mammalian target of rapamycin complex 1 (mTORC1), which was found to be hyperactive in AD brain, regulates autophagy and is considered to be mechanistically important to aberrant autophagy in AD. Hormones and nutrients such as insulin and leucine, respectively, positively regulate mTORC1 activation and are largely considered to inhibit autophagy. However, in AD brain there is a dysregulation of nutrient metabolism, linked to insulin resistance, where a role for insulin treatment to improve cognition has been proposed. Recent studies have highlighted that mitochondrial proteins such as glutamate dehydrogenase and the human branched chain aminotransferase protein, through metabolism of leucine and glutamate, differentially regulate mTORC1 and autophagy. As the levels of the hBCAT proteins are significantly increased in AD brain relative to aged-matched controls, we discuss how these metabolic pathways offer new potential therapeutic targets. In this review article, we highlight the core regulation of autophagy through mTORC1, focusing on how insulin and leucine will be important to consider in particular with respect to our understanding of nutrient load and AD pathogenesis

    Immunotherapeutic and pharmacological approaches for the treatment of Alzheimer’s disease

    Get PDF
    The development of efficacious treatments targeting Alzheimer’s disease (AD) aetiology has been proved an extensive, time consuming task. Currently prescribed therapies, primarily acetylcholinesterase inhibitors such as donepezil and the NMDAreceptor antagonist memantine, concentrate on the improvement of symptoms such as cognitive decline and memory loss, however, do not address the underlying pathology of the condition. More recently, efforts have focused on developing drugs that target the hallmarks of AD, amyloid-β (Aβ) plaques and hyperphosphorylated tau tangles. Many clinical trials focusing on the removal of these proteins are presently ongoing, primarily exploring immunotherapeutic avenues such as the antibody aducanumab (targeting Aβ) and the vaccine AADvac-1 (targeting tau). However, the incomplete understanding of AD progression presents a challenge, and further studies focusing on the development of the disease are essential to the expansion of novel, efficient therapeutic routes

    Enhanced task-related brain activation and resting perfusion in healthy older adults after chronic blueberry supplementation

    Get PDF
    © 2017, Canadian Science Publishing. All rights reserved. Blueberries are rich in flavonoids, which possess antioxidant and anti-inflammatory properties. High flavonoid intakes attenuate age-related cognitive decline, but data from human intervention studies are sparse. We investigated whether 12 weeks of blueberry concentrate supplementation improved brain perfusion, task-related activation, and cognitive function in healthy older adults. Participants were randomised to consume either 30 mL blueberry concentrate providing 387 mg anthocyanidins (5 female, 7 male; age 67.5 ± 3.0 y; body mass index, 25.9 ± 3.3 kg·m−2) or isoenergetic placebo (8 female, 6 male; age 69.0 ± 3.3 y; body mass index, 27.1 ± 4.0 kg·m−2). Pre-and postsupplementation, participants undertook a battery of cognitive function tests and a numerical Stroop test within a 1.5T magnetic resonance imaging scanner while functional magnetic resonance images were continuously acquired. Quantitative resting brain perfusion was determined using an arterial spin labelling technique, and blood biomarkers of inflammation and oxidative stress were measured. Significant increases in brain activity were observed in response to blueberry supplementation relative to the placebo group within Brodmann areas 4/6/10/ 21/40/44/45, precuneus, anterior cingulate, and insula/thalamus (p < 0.001) as well as significant improvements in grey matter perfusion in the parietal (5.0 ± 1.8 vs-2.9 ± 2.4%, p = 0.013) and occipital (8.0 ± 2.6 vs-0.7 ± 3.2%, p = 0.031) lobes. There was also evidence suggesting improvement in working memory (2-back test) after blueberry versus placebo supplementation (p = 0.05). Supplementation with an anthocyanin-rich blueberry concentrate improved brain perfusion and activation in brain areas associated with cognitive function in healthy older adults

    Hypoxia modulates the stem cell population and induces EMT in the MCF-10A breast epithelial cell line

    Get PDF
    A common feature among pre-malignant lesions is the induction of hypoxia through increased cell propagation and reduced access to blood flow. Hypoxia in breast cancer has been associated with poor patient prognosis, resistance to chemotherapy and increased metastasis. Although hypoxia has been correlated with factors associated with the latter stages of cancer progression, it is not well documented how hypoxia influences cells in the earliest stages of transformation. Using the immortalized MCF-10A breast epithelial cell line, we used hypoxic culture conditions to mimic reduced O2 levels found within early pre-malignant lesions and assessed various cellular parameters. In this non-transformed mammary cell line, O2 deprivation led to some changes not immediately associated with cancer progression, such as decreased proliferation, cell cycle arrest and increased apoptosis. In contrast, hypoxia did induce other changes more consistent with an increased metastatic potential. A rise in the CD44+CD24-/low-labeled cell sub-population along with increased colony forming capability indicated an expanded stem cell population. Hypoxia also induced cellular and molecular changes consistent with an epithelial-to-mesenchymal transition (EMT). Furthermore, these cells now exhibited increased migratory and invasive abilities. These results underscore the contribution of the hypoxic tumour microenvironment in cancer progression and dissemination

    Effects of carotenoids on mitochondrial dysfunction

    Get PDF
    Oxidative stress, an imbalance between pro-oxidant and antioxidant status, favouring the pro-oxidant state is a result of increased production of reactive oxygen species (ROS) or inadequate antioxidant protection. ROS are produced through several mechanisms in cells including during mitochondrial oxidative phosphorylation. Increased mitochondrial-derived ROS are associated with mitochondrial dysfunction, an early event in age-related diseases such as Alzheimer's diseases (ADs) and in metabolic disorders including diabetes. AD post-mortem investigations of affected brain regions have shown the accumulation of oxidative damage to macromolecules, and oxidative stress has been considered an important contributor to disease pathology. An increase in oxidative stress, which leads to increased levels of superoxide, hydrogen peroxide and other ROS in a potentially vicious cycle is both causative and a consequence of mitochondrial dysfunction. Mitochondrial dysfunction may be ameliorated by molecules with antioxidant capacities that accumulate in mitochondria such as carotenoids. However, the role of carotenoids in mitigating mitochondrial dysfunction is not fully understood. A better understanding of the role of antioxidants in mitochondrial function is a promising lead towards the development of novel and effective treatment strategies for age-related diseases. This review evaluates and summarises some of the latest developments and insights into the effects of carotenoids on mitochondrial dysfunction with a focus on the antioxidant properties of carotenoids. The mitochondria-protective role of carotenoids may be key in therapeutic strategies and targeting the mitochondria ROS is emerging in drug development for age-related diseases

    Differential expression of the BCAT isoforms between breast cancer subtypes

    Get PDF
    © 2020, The Author(s). Background: Biological characterisation of breast cancer subtypes is essential as it informs treatment regimens especially as different subtypes have distinct locoregional patterns. This is related to metabolic phenotype, where altered cellular metabolism is a fundamental adaptation of cancer cells during rapid proliferation. In this context, the metabolism of the essential branched-chain amino acids (BCAAs), catalysed by the human branched-chain aminotransferase proteins (hBCAT), offers multiple benefits for tumour growth. Upregulation of the cytosolic isoform of hBCAT (hBCATc), regulated by c-Myc, has been demonstrated to increase cell migration, tumour aggressiveness and proliferation in gliomas, ovarian and colorectal cancer but the importance of the mitochondrial isoform, hBCATm has not been fully investigated. Methods: Using immunohistochemistry, the expression profile of metabolic proteins (hBCAT, IDH) was assessed between breast cancer subtypes, HER2 + , luminal A, luminal B and TNBC. Correlations between the percentage and the intensity of protein expression/co-expression with clinical parameters, such as hormone receptor status, tumour stage, lymph-node metastasis and survival, were determined. Results: We show that hBCATc expression was found to be significantly associated with the more aggressive HER2 + and luminal B subtypes, whilst hBCATm and IDH1 associated with luminal A subtype. This was concomitant with better prognosis indicating a differential metabolic reliance between these two subtypes, in which enhanced expression of IDH1 may replenish the α-ketoglutarate pool in cells with increased hBCATm expression. Conclusion: The cytosolic isoform of BCAT is associated with tumours that express HER2 receptors, whereas the mitochondrial isoform is highly expressed in tumours that are ER + , indicating that the BCAT proteins are regulated through different signalling pathways, which may lead to the identification of novel targets for therapeutic applications targeting dysregulated cancer metabolism

    Decreased expression of the mitochondrial bcat protein correlates with improved patient survival in idh-wt gliomas

    Get PDF
    Background and research question: Gliomas represent 43% of all solid intracranial tumours, of which glioblastomas have the poorest prognosis. Recently, the human cytosolic branched-chain aminotransferase protein (hBCATc), which metabolises the branched-chain amino acids (BCAA), was identified as a biomarker and therapeutic target for glioblastomas carrying wild-type isocitrate dehydrogenase (IDH-WT) genes. However, the clinical utility of the mitochondrial isoform, hBCATm, which also metabolises BCAAs, was not determined nor its potential role in predicting patient survival.Methods: Glioblastomas, of grades II-IV, from 53 patients were graded by a neuropathologist, where the IDH and MGMT status were assessed. Tumours positive for hBCATm, hBCATc and BCKDC were characterised using immunohistochemistry and Western blot analysis using antibodies specific to these proteins.Results: Here, we report that in IDH-WT tumours, the expression of hBCATm is significantly increased (p=0.034) relative to IDH mutation gliomas, and significantly correlates with patient survival, on Kaplan-Meier analysis, where low hBCATm expression is a positive prognostic factor (p=0.003). Moreover, increased hBCATm expression in these glioblastomas correlated with tumour grade indicating their role as a predictive biomarker of glioma progression. Multiple banding was observed for the branched-chain α-keto acid dehydrogenase complex, which catalyses the committed step in BCAA metabolism, but a significant change in expression was absent (p=0.690). Conclusion: Until now, IDH-WT glioblastomas have a uniformly poor prognosis, however we demonstrate for the first time that relatively low hBCATm may select for a better performing subset within this group and may represent a therapeutic target in these hard to treat patients

    BCAT-induced autophagy regulates Aβ load through an interdependence of redox state and PKC phosphorylation-implications in Alzheimer's disease

    Get PDF
    Leucine, nutrient signal and substrate for the branched chain aminotransferase (BCAT) activates the mechanistic target of rapamycin (mTORC1) and regulates autophagic flux, mechanisms implicated in the pathogenesis of neurodegenerative conditions such as Alzheimer's disease (AD). BCAT is upregulated in AD, where a moonlighting role, imparted through its redox-active CXXC motif, has been suggested. Here we demonstrate that the redox state of BCAT signals differential phosphorylation by protein kinase C (PKC) regulating the trafficking of cellular pools of BCAT. We show inter-dependence of BCAT expression and proteins associated with the P13K/Akt/mTORC1 and autophagy signalling pathways. In response to insulin or an increase in ROS, BCATc is trafficked to the membrane and docks via palmitoylation, which is associated with BCATc-induced autophagy through PKC phosphorylation. In response to increased levels of BCATc, as observed in AD, amyloid β (Aβ) levels accumulate due to a shift in autophagic flux. This effect was diminished when incubated with leucine, indicating that dietary levels of amino acids show promise in regulating Aβ load. Together these findings show that increased BCATc expression, reported in human AD brain, will affect autophagy and Aβ load through the interdependence of its redox-regulated phosphorylation offering a novel target to address AD pathology

    Altered Expression of Human Mitochondrial Branched Chain Aminotransferase in Dementia with Lewy Bodies and Vascular Dementia

    Get PDF
    © 2016, The Author(s). Cytosolic and mitochondrial human branched chain aminotransferase (hBCATc and hBCATm, respectively) play an integral role in brain glutamate metabolism. Regional increased levels of hBCATc in the CA1 and CA4 region of Alzheimer’s disease (AD) brain together with increased levels of hBCATm in frontal and temporal cortex of AD brains, suggest a role for these proteins in glutamate excitotoxicity. Glutamate toxicity is a key pathogenic feature of several neurological disorders including epilepsy associated dementia, AD, vascular dementia (VaD) and dementia with Lewy bodies (DLB). To further understand if these increases are specific to AD, the expression profiles of hBCATc and hBCATm were examined in other forms of dementia including DLB and VaD. Similar to AD, levels of hBCATm were significantly increased in the frontal and temporal cortex of VaD cases and in frontal cortex of DLB cases compared to controls, however there were no observed differences in hBCATc between groups in these areas. Moreover, multiple forms of hBCATm were observed that were particular to the disease state relative to matched controls. Real-time PCR revealed similar expression of hBCATm mRNA in frontal and temporal cortex for all cohort comparisons, whereas hBCATc mRNA expression was significantly increased in VaD cases compared to controls. Collectively our results suggest that hBCATm protein expression is significantly increased in the brains of DLB and VaD cases, similar to those reported in AD brain. These findings indicate a more global response to altered glutamate metabolism and suggest common metabolic responses that might reflect shared neurodegenerative mechanisms across several forms of dementia
    corecore