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Alzheimer’s disease (AD) is a progressive disease associated with the production and
deposition of amyloid β-peptide (Aβ) aggregates and neurofibrillary tangles, which
lead to synaptic and neuronal damage. Reduced autophagic flux has been widely
associated with the accumulation of autophagic vacuoles (AV), which has been
proposed to contribute to aggregate build-up observed in AD. As such, targeting
autophagy regulation has received wide review, where an understanding as to how
this mechanism can be controlled will be important to neuronal health. The mammalian
target of rapamycin complex 1 (mTORC1), which was found to be hyperactive in
AD brain, regulates autophagy and is considered to be mechanistically important
to aberrant autophagy in AD. Hormones and nutrients such as insulin and leucine,
respectively, positively regulate mTORC1 activation and are largely considered to inhibit
autophagy. However, in AD brain there is a dysregulation of nutrient metabolism,
linked to insulin resistance, where a role for insulin treatment to improve cognition has
been proposed. Recent studies have highlighted that mitochondrial proteins such as
glutamate dehydrogenase and the human branched chain aminotransferase protein,
through metabolism of leucine and glutamate, differentially regulate mTORC1 and
autophagy. As the levels of the hBCAT proteins are significantly increased in AD brain
relative to aged-matched controls, we discuss how these metabolic pathways offer new
potential therapeutic targets. In this review article, we highlight the core regulation of
autophagy through mTORC1, focusing on how insulin and leucine will be important
to consider in particular with respect to our understanding of nutrient load and AD
pathogenesis.
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INTRODUCTION

Alzheimer’s disease (AD), similar to other neurodegenerative diseases, is characterized by the
accumulation of protein aggregates, namely amyloid β-peptide (Aβ) and Tau tangles, which
lead to synaptic and neuronal damage, particularly in the hippocampal and the inferior
parietal lobule (IPL) regions of the brain, resulting in memory loss (Braak and Braak,
1991; Borlikova et al., 2013). Autophagy, of which there are three types, microautophagy,
chaperone-mediated autophagy and macroautophagy, is important for aggregate clearance
and is considered to be dysregulated in neurodegenerative conditions, such as AD.
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Macroautophagy (referred to as autophagy in this review article)
is the major degradation pathway in which constitutive
autophagy clears functionally redundant or damaged
intracellular structures whilst induced autophagy is initiated in
response to environmental factors such as nutrient starvation
and oxidative stress, generating recycled amino acids, lipids
and other nutrients (Heras-Sandoval et al., 2014). Initially,
organelles and proteins to be degraded are surrounded by
an isolation membrane (phagophore) which fuses together
to form a double membrane vesicle (autophagosomes; Dunn,
1990; Klionsky and Ohsumi, 1999; Figure 1A). Hydrolytic
enzymes are acquired by merging of the autophagosome
with acidified lysosomes (autolysosome; Appelqvist et al.,
2013). Autophagosomes are then trafficked in a dynein-
dependent retrograde manner along microtubules to lysosomes,
which fuse to form the autolysosome (Seaman, 2012; Small
and Petsko, 2015). Maturation or late-stage autophagy is
fundamental to clearance and inhibition of maturation, fusion
or lysosomal function can interfere with autophagic flux (Yang
and Klionsky, 2010). The autophagy pathway is regulated by
several signaling cascades; in particular the mammalian target
of rapamycin (mTOR) pathway, which controls the initiation
stage of autophagy and negatively regulates the biogenesis of
lysosomes. Here, we review the role of autophagy in AD and
discuss how our current understanding of nutrient load and
insulin regulation are involved in its dysregulation through
the mTOR pathway.

ABERRANT AUTOPHAGY IN
ALZHEIMER’S DISEASE

In post-mortem AD brain, autophagic vacuoles (AV) were found
to have accumulated and the number of dystrophic neurites
containing these AV were considerably greater relative to
matched controls (Cataldo et al., 1997; Nixon et al., 2005; Nixon,
2007). High levels of Aβ and γ-secretase subunits found in AVs
indicated that amyloid precursor protein (APP) processing can
occur, where impaired clearance could contribute to elevated Aβ

levels in the brain (Yu et al., 2005). Several studies have suggested
that Aβ deposition occurs later in the disease process (Yang
et al., 1998; Cataldo et al., 2000). As autophagosome imbalance
is thought to occur as an early event in the pathogenesis of
AD, dysregulation of this pathway may be upstream of aggregate
accumulation (Perez et al., 2015). Autophagy is a multistep
process (Figure 1), where a dysfunction in the formation or
clearance of the autophagosome or its regulation could result
in aggregate accumulation. What is clear is that the autophagy
related proteins (Atg) are fundamentally important as knockout
of Atg7 in mice results in neurodegenerative disease, with
accumulation of ubiquitinated protein aggregates (Komatsu
et al., 2005). Several other aspects of the pathway are also
vulnerable and are thus seen as potential therapeutic targets.
Proteins important for elongation and closure including LC3 and
Beclin 1, were found to be downregulated in the IPL of AD
tissue, a deficiency of which would compromise autophagosome
formation (Pickford et al., 2008; Rohn et al., 2011). In APP

transgenic mice models, depletion of Beclin 1 resulted in the
accumulation of intracellular and extracellular Aβ, highlighting
the importance of early autophagosome formation in Aβ

clearance (Pickford et al., 2008). There are also indicators
that end-stage processing at the autophagic/lysosomal stage is
disrupted, where in AD brain, the lysosomal protease cathepsin
D (intracellular aspartyl protease) was found to be upregulated
(Cataldo et al., 1995). Cathepsins have β and γ secretase activity,
are capable of cleaving APP, and if inhibited or deleted result
in a build-up of Aβ (Mueller-Steiner et al., 2006) and tau
aggregates (Hamano et al., 2008). The final stage of vesicular
trafficking has also been shown to be perturbed, resulting in
inefficient clearance of AVs, reducing autophagic flux (for review
see Small and Petsko, 2015). Therefore it is clear that autophagy
dysregulation (at all stages) has been implicated in aggregate
accumulation or ineffective clearance. However, what is not clear
are the mechanistic details underpinning or regulating these
alterations in autophagy or how specifically it results in Aβ and
tau aggreation and more so if the process begins upstream of
autophagy.

mTOR AND NUTRIENT MODULATION OF
AUTOPHAGY

The mTOR pathway acts as an environmental sensor, which
positively regulates protein synthesis and represses autophagy.
mTOR forms complexes with several different core proteins,
collectively described as mTORC1 and mTORC2 (not a direct
autophagy regulator; Tan and Miyamoto, 2016). Knowledge
of external stimuli that regulate the P13K/Akt/mTORC1 axis
is important as active mTORC1 plays a role in neuronal
synaptic plasticity and in neuronal survival during embryonic
development (Morita et al., 2015). Hormones and growth factors
such as insulin, insulin-like growth factor (IGF-1) and epidermal
growth factor trigger mTORC1 activity through a cascade
of events that begins with the receptor-mediated activation
of phosphatidylinositol 3-kinase-related kinase protein (P13K)
through phosphorylation of the insulin receptor substrate
(IRS1 and IRS2; Figure 1B; Um et al., 2006). mTORC1 rather
than mTORC2 is regulated by nutrients such as amino
acids (in particular but not exclusively, leucine) and glucose
(Figure 1C; Gulati et al., 2008). Ultimately activation of
the eukaryotic initiation factor 4E (eIF4E), its repressor
eIF4E binding protein (4E-BP1), and p70S6K results in
increased protein translation and synthesis, but lipid and
nucleotide synthesis are also regulated (Goberdhan et al., 2016).
Under fed conditions, mTORC1 regulates autophagy through
phosphorylation at Ser757 of the ULK1 complex and blocks
its interaction with 5′ AMP-activated protein kinase (AMPK),
preventing autophagosome initiation (Long and Zierath, 2006).
However, reports of inhibition at the maturation step through
phosphorylation of UVRAG, extends its influence at several
stages of autophagy (Liang et al., 2008). Conversely, low glucose,
depletion of amino acids and oxidative stress are all key negative
regulators of mTORC1 but stimulators of autophagy, where
a balance between protein synthesis and clearance maintains
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FIGURE 1 | Regulation of autophagy by nutrients and hormones via the mammalian target of rapamycin (mTOR) signaling pathway. (A) Autophagosome induction
begins with the activation of the ULK1/2 protein kinase complex that includes the autophagy related proteins (Atgs, where Atg13 is indispensable) and the 200 kDa
focal adhesion kinase family-interacting protein (FIP200). This is followed by a nucleation step that is dependent on the class III phosphatidylinositol 3-kinase or
human vacuolar protein sorting 34 (hVps34), complexed with BCL-2 interacting moesin-like coiled-coil protein 1 (Beclin 1) and Vps15. Phosphorylation of
phosphatidylinositol (PtdIns) by hVps34 signals the recruitment of other autophagy proteins required for elongation. Beclin 1 is involved in two recruitment
complexes, the Atg14L and UV radiation resistance-associated gene (UVRAG) complex, which are required for phagophore formation and phagocytosis,
respectively. Elongation and closure of the autophagosome requires several Atg proteins, hVps34 and microtubule-associated light chain
3 phosphatidylethanolamine (LC3), which is regulated by GTPase Rab5. The outer membrane of the autophagosome then fuses with a lysosome, exposing the inner
single membrane to lysosomal hydrolases whereby the contents are degraded. (B) Hormones and growth factors such as insulin and insulin-like growth factor
(IGF-1) trigger mTORC1 activity through a cascade of events resulting in recruitment and activation of Akt which induces phosphorylation and degradation of
tuberous sclerosis complex protein 2 (TSC2). TSC2 degradation permits GTP-bound Rheb to directly interact and activate mTORC1. The Ras-ERK pathway also
activates mTORC1 through inhibitions of TSC1 and TSC2. (C) Amino acids, in particular leucine, regulate the mTORC1 through the Rag complex (Ras-related
GTPase), which recruits mTOR to the lysosomes with Rheb and hVps34. (D) Inhibition of the amp-activated protein kinase (AMPK) signaling pathway is triggered by
high glucose levels, resulting in the decrease of AMP:ATP ratio that inhibits TSC1 and TSC2, activating mTORC1 and inhibiting autophagy.

cellular homeostasis (Wang et al., 1998). Sustained activation of
p70S6K however, also phosphorylates IRS1 at inhibitory sites,
negatively regulating Akt and stimulating autophagy (Shah et al.,
2004). This fine line between stimulation and inhibition seems to
decide direction and we question if there is scope to also consider
a gray area, a period where these signaling metabolons form
a synchronized collaboration between transitions. Pathways,
which influence and respond to mTORC1 activity, such as the
RAS-extracellular signal-regulated kinase (Ras-ERK), AMPK and
mitogen-activated protein kinase (MAPK), expose a highway of

networks that will be altered should mTORC1 activity change
(Mendoza et al., 2011).

LEUCINE A DUAL ROLE IN mTORC1
AND AUTOPHAGY

Leucine was the first of the amino acids shown to activate
mTORC1, blocking autophagy (Hara et al., 1998; Beugnet et al.,
2003), but other amino acids such as glutamine, serine and

Frontiers in Aging Neuroscience | www.frontiersin.org 3 June 2017 | Volume 9 | Article 173

http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive


Shafei et al. Aberrant Metabolism in Alzheimer’s Disease

arginine also function as key effectors (Jewell et al., 2015;
Carroll et al., 2016). Although the mechanistic details are far less
understood than the insulin/IGF pathway, their importance is
gaining impetuous as the amino acid profiles or their metabolic
enzymes are altered in several disease conditions, including Type
2 diabetes mellitus (T2DM) and AD (Vannini et al., 1982; Wang
et al., 2011; Hull et al., 2015). The coupling of amino acid
transport andmetabolism is intrinsically linked, where activity of
the system L (LAT) and systemA transporter influencemTORC1
(reviewed in Dodd and Tee, 2012; Goberdhan et al., 2016). In
brief, leucine is imported by the solute carrier family 7 member 5
(SLC7A5), which requires glutamine exchange through the Na+-
linked system-A transporter (or system ASC (SLC1A5), coupled
with the glycoprotein CD98 (Nicklin et al., 2009). Studies indicate
that p70S6K was not activated until glutamine was exchanged
for leucine, and reactivation of starved cells was dependent on
glutamine uptake (Chen et al., 2014). Several factors are involved
in amino acid signaling including but not limited to the Rag
GTPases, the MAP4K3/GLK pathway, leucyl-tRNA synthetase,
the adaptor protein p62 and P13K/hVps34 (Figure 1C; reviewed
in Meijer et al., 2015).

Cellular uptake of leucine activates Rag GTPase heterodimers
(RagA/B and RagC/D; Sancak et al., 2008; Sancak and Sabatini,
2009), which is dependent on hVps34 expression (Nobukuni
et al., 2005). Activated Rag A/B-GTP binds mTORC1, through
Raptor, and recruits mTORC1 via the Ragulator complex
(MP1, p14 and p18) to the lysosome membrane, where
Rheb resides (Kogan et al., 2010). The signaling adaptor p62,
which influences cell survival and autophagy, has also been
assigned a role in the amino acid induced recruitment of
mTORC1 to lysosomes (Duran et al., 2011). Ultimately, Rheb
a GTPase, now in close proximity, activates mTORC1-GTP
and autophagy is inhibited through ULK1/2 and AMPK
phosphorylation, increasing protein synthesis. Through amino
acid signaling, a protein complex, called GATOR, and their
regulators Sestrin 1/2 and CASTOR 1modulate the interaction of
Rags with mTORC1 (Chantranupong et al., 2014). Interestingly,
hVps34, long associated with autophagy, shows increased
expression in response to amino acids (Nobukuni et al.,
2005). Activation of hVps34 by amino acids induced complex
formation with hVps15, which is targeted to early endosomes by
Rab7 supporting recruitment of proteins containing FYVE or PX
domains (Um et al., 2006). Conversely, as described above during
amino acid deprivation, hVps34 in a complex with Beclin 1,
UVRAG and hVps15 drives autophagy. Thus, hVps34 expression
is a shared protein between mTORC1 and autophagy regulation,
the association of which seems to be dictated by nutrient load.

Themitochondrial protein, glutamate dehydrogenase (GDH),
has been hypothesized to contribute to mTORC1 and autophagy
regulation (Meijer and Codogno, 2008). GDH catalyzes the
conversion of glutamate to α-keto glutarate (α-KG) releasing
ammonia and NADH. It is thought that α-KG (potentially
through propylhydrylase) activates RagB, driving mTORC1
(Durán et al., 2012). What is interesting is that the human
branched chain aminotransferase (hBCAT) protein (hBCAT),
which catalyzes the transamination of the branched-chain amino
acids (BCAAs) and α-KG to glutamate and their respective

α-keto acids (Conway and Hutson, 2016), have not been
considered in these proposals. The hBCAT proteins are redox
sensitive proteins (Conway et al., 2002, 2004, 2008), which
form a metabolon with GDH in their reduced form, but
when oxidized catalysis is reversibly inactivated (Islam et al.,
2007). We hypothesize that in its reduced form hBCAT
favors glutamate production through leucine transamination,
important for GDH activity and thus mTORC1 activation.
However, through either amino acid depletion or through an
increase in oxidative stress this unique redox switch changes
the function of hBCAT preventing metabolon formation with
GDH reducing α-KG. This would inhibit mTORC1 activity
and stimulate autophagy. Our work has shown that when
hBCAT is overexpressed there is a significant increase in the
level of p70S6K and a concomitant reduction in autophagy
(unpublished observations). The dynamics and vectorality of
these mechanisms are not entirely clear but more than likely will
involve a nano-switch, such as that described for hBCAT, which
responds to changes in cellular homeostasis.

mTORC1, AUTOPHAGY AND
ALZHEIMER’S DISEASE

Under conditions where AD pathology persists, there is a
reported loss of mTORC1 regulation, resulting in aggregate
accumulation in the cell (Figure 2). Indeed, levels of Akt
activation (Griffin et al., 2005), mTORC1 phosphorylated at
Ser248 only, together with phosphorylated 4EBP1 (Li et al.,
2005), p70S6K (Sun et al., 2014) and eIF4E (Li et al., 2005) were
significantly increased in AD brain and correlated with Braak
staging and tau pathology, indicating that protein translation is
radically disordered. mTORC1 hyper-activation also correlated
with cognitive decline in AD individuals (Caccamo et al.,
2010; Sun et al., 2014). Neurons immunoreactive to PTEN
show reduced expression in AD hippocampus and temporal
cortex with a negative correlation to the severity of NFTs
and plaques (Griffin et al., 2005). As PTEN attenuates
PI3K/Akt signaling, through the dephosphorylation of
PIP3, reduced levels can result in the hyper-activation of
Akt signaling driving mTORC1 activity. Over activation of
the PI3K/Akt/mTORC1 axis would inhibit autophagy and
potentially contribute to reduced clearance of Aβ. However, we
also need to consider that this would generate sustained p70S6K
activation, which should phosphorylate IRS1, causing insulin
desensitization and interrupted Akt activation, an apparent
contradiction to what was reported in post-mortem AD brain.
The most likely explanation is that other pathways, independent
of insulin activation of mTORC1, may be responsible, such as
(but not limited to) the ERK1/2 pathway, which incidentally
was also found to be upregulated in AD brain and cell models
(Young et al., 2009; Morales-Corraliza et al., 2016). In cell
models, Aβ accumulation exacerbated mTORC1 signaling
through phosphorylation of proline-rich Akt substrate of
40 kDa (PRAS40), promoting mTORC1 activity and inhibiting
autophagy (Caccamo et al., 2011; Tramutola et al., 2015).
Inhibition of mTORC1 using rapamycin alleviated Aβ
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FIGURE 2 | Divergent metabolic regulation in Alzheimer’s disease (AD). In AD brain, levels of Akt, PIP3, ERK1/2, and human branched chain aminotransferase
(hBCAT) are increased together with phosphorylation of mTOR at Ser248, 4EBP1, eukaryotic initiation factor 4E (eIF4E) and p70S6K. The decreased expression of
PTEN, an inhibitor of PI3K/Akt signaling, further activates mTOR. Over-activation of the PI3K/Akt/mTOR axis inhibits autophagy, supported by reduced levels of
Beclin-1 and LC3 in the AD brain, thus reducing aggregate clearance including Aβ. Accumulative Aβ levels, alongside increased p70S6K, cause phosphorylation and
inhibition of IRS1 instigating insulin desensitization. mTOR hyperactivation and the associated changes in metabolic proteins correlate with tau pathology and
cognitive decline.

accumulation and improved cognitive function in AD mice
models, supporting this pathway as a future target to regulate
neuronal health (Caccamo et al., 2010). However, upstream of
mTORC1, we also find that disruptions to glucose and amino
acid metabolism linked to insulin resistance and AD pathology
add even further complexity.

INSULIN RESISTANCE AND LEUCINE
METABOLISM IN ALZHEIMER’S BRAIN

Increasing evidence indicates that T2DM doubles the risk of
developing AD as well as causing accelerated onset (Biessels
et al., 2006; Domínguez et al., 2014; Exalto et al., 2014).
Reports of insulin resistance and reduced expression of IGF1 and
insulin receptors in AD brain has been linked to mild-cognitive
impairment (Steen et al., 2005; Lu et al., 2013; Kim et al.,
2015). Insulin resistance is considered to be further perpetuated
by levels of Aβ oligomers through increased phosphorylation
of the IRS1 inhibitory residue (Ser307; Moloney et al., 2010;
O’Neill et al., 2012; Tramutola et al., 2015). Desensitization of
neurons to insulin/IGF-1 responses will result in reduced glucose
utilization and deficient energy metabolism (Mosconi, 2005).
One would anticipate that mTORC1 activation through insulin
would subsequently be lost and low cellular glucose should
activate the AMPK pathway, further inhibiting mTORC1 driving
autophagy. However, in addition to Aβ stimulation of mTORC1,
AMPK activity was shown to be diminished in aged brain, and
even more pronounced in T2DM, despite reduced intracellular
glucose, which may also explain how hyperactivation of
mTORC1 persists in the absence of insulin (Kodiha and

Stochaj, 2011). Additionally, insulin degrading enzyme (IDE),
which regulates extracellular Aβ degradation, showed reduced
expression and activity that negatively correlated with Aβ levels
in AD (Vekrellis et al., 2000; van der Heide et al., 2006; Zhao
et al., 2007). Interestingly, enhanced IDE activity in APP double
transgenic mice reduced Aβ levels in the brain preventing plaque
formation (Leissring et al., 2003). Together these studies suggest
that upregulation of IDE offers therapeutic benefits to target
Aβ plaque removal in vivo. Intra-hippocampal administration of
insulin in a T2DM rat model attenuated cognitive impairment
(McNay et al., 2010) and in a separate study nasal insulin
administration in a diabetic mouse model improved diabetic-
related decline in cognitive function, offering evidence that
overcoming insulin resistance may have therapeutic benefits in
AD patients (Wang et al., 2010). A pilot study in humans showed
that treatment with intranasal insulin improved delayed memory
and preserved general cognition (Craft et al., 2012). However,
larger more in-depth studies will decide if this treatment has
sustained impact overtime.

Increased blood levels of BCAAs positively correlate with
insulin resistance and have been used as signature profiles
for T2DM, insulin-resistant states of obesity and Huntington’s
disease (Vannini et al., 1982; Mochel et al., 2007, 2011; Wang
et al., 2011). For those individuals with T2DM-associated
AD increased BCAAs, particularly leucine, could over activate
mTORC1 signaling through the various pathways highlighted.
Hyperleucinamia in a T2DM mouse model showed that
retromer trafficking was impaired, with decreased levels of
hVps34 reported, whereby hyperleucinemia may account in
part for insulin resistance and driving mTORC1 activation
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independent of insulin (Morabito et al., 2014). Our group has
reported that the hBCAT proteins are significantly upregulated
in AD brain relative to age-matched controls and in dementia
with lewy bodies and vascular dementia (Hull et al., 2015;
Ashby et al., 2017). Here, we proposed that an increase in these
proteins was initially to protect neuronal cells through glutamate
regulation. In light of our recent work, we now extend their role
in brain metabolism as indirect modulators of mTORC1 and
autophagy. Here, we suggest that overexpression of hBCAT
could contribute to the hyperactivation of mTORC1, disrupting
autophagy, potentially through GDHmetabolism of glutamate.

On the other hand, supplementation of BCAAs improved
glucose homeostasis and insulin resistance in patients with
hepatic cirrhosis (Kawaguchi et al., 2008) and increasing dietary
leucine intake improved glucose and cholesterol metabolism
in mice, indicating that a balance must be met to avoid
disequilibrium (Zhang et al., 2007). Contrary to T2DM, levels of
BCAAswere reduced in patients recovering from traumatic brain
injury and supplementation contributed to improved cognitive
function, observed both in humans and rat models of TBI
(Vuille-Dit-Bille et al., 2012; Jeter et al., 2013). Although the exact
mechanisms controlling this balance between nutrient load and
pathology remains elusive these studies highlight the potential for
diet to significantly impact these regulatory pathways and should
we get the balance correct may be able to delay the onset of AD.

CONCLUSION

This review has primarily focussed on dysregulated nutrient
signaling that impacts autophagy at early endosome formation

offering insight into potential pathways that are dysregulated
in AD. Clearly, our understanding of how mTORC1 and
these signaling networks regulate protein aggregation is
far from complete. Importantly, nutrients and growth
factors control these pathways and we potentially have an
opportunity to regulate brain metabolism through diet.
This may be important in neurodegenerative conditions
as levels of amino acids are significantly increased in HD
and T2DM. However, dysfunctional retromer-dependent
trafficking will also be key, in particular with respect to its
regulation by nutrient load and cellular stress. It is likely
that these pathways operate as metabolons, where clearly a
change in function for key metabolic proteins is important
for regulation. We speculate that this change in function is
triggered by changes in cellular homeostasis, governed by
nutrient signals, hypoxia or hormones, and an understanding
of which could identify key targets for future neurodegenerative
therapeutics. Targeting autophagy and its regulation is therefore
of value, where an understanding as to how this mechanism
can be controlled will be important to maintain neuronal
health.
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