141 research outputs found
Recent Decisions
Comments on recent decisions by Richard D. Schiller, J. M. Lynes, Harry Contos, R. L. Cousineau, and Norris James Bishton
Role of lysophosphatidic acid receptor LPA2 in the development of allergic airway inflammation in a murine model of asthma
<p>Abstract</p> <p>Background</p> <p>Lysophosphatidic acid (LPA) plays a critical role in airway inflammation through G protein-coupled LPA receptors (LPA<sub>1-3</sub>). We have demonstrated that LPA induced cytokine and lipid mediator release in human bronchial epithelial cells. Here we provide evidence for the role of LPA and LPA receptors in Th2-dominant airway inflammation.</p> <p>Methods</p> <p/> <p>Wild type, LPA<sub>1 </sub>heterozygous knockout mice (LPA<sub>1</sub><sup>+/-</sup>), and LPA<sub>2 </sub>heterozygous knockout mice (LPA<sub>2</sub><sup>+/-</sup>) were sensitized with inactivated <it>Schistosoma mansoni </it>eggs and local antigenic challenge with <it>Schistosoma mansoni </it>soluble egg Ag (SEA) in the lungs. Bronchoalveolar larvage (BAL) fluids and lung tissues were collected for analysis of inflammatory responses. Further, tracheal epithelial cells were isolated and challenged with LPA.</p> <p>Results</p> <p>BAL fluids from <it>Schistosoma mansoni </it>egg-sensitized and challenged wild type mice (4 days of challenge) showed increase of LPA level (~2.8 fold), compared to control mice. LPA<sub>2</sub><sup>+/- </sup>mice, but not LPA<sub>1</sub><sup>+/- </sup>mice, exposed to <it>Schistosoma mansoni </it>egg revealed significantly reduced cell numbers and eosinophils in BAL fluids, compared to challenged wild type mice. Both LPA<sub>2</sub><sup>+/- </sup>and LPA<sub>1</sub><sup>+/- </sup>mice showed decreases in bronchial goblet cells. LPA<sub>2</sub><sup>+/- </sup>mice, but not LPA<sub>1</sub><sup>+/- </sup>mice showed the decreases in prostaglandin E2 (PGE2) and LPA levels in BAL fluids after SEA challenge. The PGE2 production by LPA was reduced in isolated tracheal epithelial cells from LPA<sub>2</sub><sup>+/- </sup>mice. These results suggest that LPA and LPA receptors are involved in <it>Schistosoma mansoni </it>egg-mediated inflammation and further studies are proposed to understand the role of LPA and LPA receptors in the inflammatory process.</p
Over-expression of lysophosphatidic acid receptor-2 in human invasive ductal carcinoma
INTRODUCTION: Lysophosphatidic acid (LPA) is a bioactive phospholipid with diverse effects on various cells. It interacts with at least three G-protein-coupled transmembrane receptors, namely LPA1, LPA2 and LPA3, whose expression in various tumours has not been fully characterized. In the present study we characterized the expression profile of LPA receptors in human breast cancer tissue and assessed the possible roles of each receptor. METHODS: The relative expression levels of each receptor's mRNA against Ξ²-actin mRNA was examined in surgically resected invasive ductal carcinomas and normal gland tissue using real-time RT-PCR. LPA2 expression was also examined immunohistochemically using a rat anti-LPA2 monoclonal antibody. RESULTS: In 25 cases normal and cancer tissue contained LPA1 mRNA at similar levels, whereas the expression level of LPA2 mRNA was significantly increased in cancer tissue as compared with its normal counterpart (3479.0 Β± 426.6 versus 1287.3 Β± 466.8; P < 0.05). LPA3 was weakly expressed in both cancer and normal gland tissue. In 48 (57%) out of 84 cases, enhanced expression of LPA2 protein was confirmed in carcinoma cells as compared with normal mammary epithelium by immunohistochemistry. Over-expression of LPA2 was detected in 17 (45%) out of 38 premenopausal women, as compared with 31 (67%) out of 46 postmenopausal women, and the difference was statistically significant (P < 0.05). CONCLUSION: These findings suggest that upregulation of LPA2 may play a role in carcinogenesis, particularly in postmenopausal breast cancer
Haptoglobin 2 Allele is Associated With Histologic Response to Vitamin E in Subjects With Nonalcoholic Steatohepatitis
Background:
Haptoglobin (Hp) genotype has been linked to oxidative stress and response to vitamin E (VitE) in patients with dyslipidemia. Its effect on histological response to VitE in nonalcoholic steatohepatitis (NASH) is unknown.
Goals:
Our objective was to determine if Hp genotype associates with response to VitE in patients with NASH.
Study:
A post hoc analysis of 228 patients receiving VitE or placebo in two clinical trials was performed. Regression analysis was used to assess the effect of VitE versus placebo, by Hp genotype (1β1, 2β1, or 2β2), on histologic features and laboratory markers of liver disease, comparing baseline to end of treatment values. An interaction term was included in the regression models to assess differential treatment effect across Hp genotype.
Results:
Hp 2β2 patients treated with VitE versus placebo showed significant histologic improvement (51% versus 20%, OR=4Β·2, p=0Β·006), resolution of steatohepatitis (44% versus 12%, OR=6.2, p=0Β·009), decrease in NAFLD Activity Score (NAS) (β2Β·2 versus β0Β·6, p=0Β·001), and decrease in liver enzymes alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and Ξ³-glutamyl transpeptidase. Hp 2β1 patients on VitE versus placebo showed improved resolution of steatohepatitis, NAS and liver enzymes. Hp 1β1 patients showed no significant improvement in histology or liver enzymes. VitE had no effect on fibrosis stage in any group. Regression analysis showed incremental benefit of having Hp 2β2 or 2β1 versus 1β1 for all liver enzymes.
Conclusion:
Hp 2 allele is associated with greater histological and biological improvement in NASH with VitE treatment compared to the Hp 1 allele
Systematic generation of in vivo G protein-coupled receptor mutants in the rat
G-protein-coupled receptors (GPCRs) constitute a large family of cell surface receptors that are involved in a wide range of physiological and pathological processes, and are targets for many therapeutic interventions. However, genetic models in the rat, one of the most widely used model organisms in physiological and pharmacological research, are largely lacking. Here, we applied N-ethyl-N-nitrosourea (ENU)-driven target-selected mutagenesis to generate an in vivo GPCR mutant collection in the rat. A pre-selected panel of 250 human GPCR homologs was screened for mutations in 813 rats, resulting in the identification of 131 non-synonymous mutations. From these, seven novel potential rat gene knockouts were established as well as 45 lines carrying missense mutations in various genes associated with or involved in human diseases. We provide extensive in silico modeling results of the missense mutations and show experimental data, suggesting loss-of-function phenotypes for several models, including Mc4r and Lpar1. Taken together, the approach used resulted not only in a set of novel gene knockouts, but also in allelic series of more subtle amino acid variants, similar as commonly observed in human disease. The mutants presented here may greatly benefit studies to understand specific GPCR function and support the development of novel therapeutic strategies
Lysophosphatidic acid production and action: critical new players in breast cancer initiation and progression
Lysophosphatidic acid (LPA) is a potent lipid mediator that acts on a series of specific G protein-coupled receptors, leading to diverse biological actions. Lysophosphatidic acid induces cell proliferation, survival and migration, which are critically required for tumour formation and metastasis. This bioactive lipid is produced by the ectoenzyme lysophospholipase D or autotaxin (ATX), earlier known as an autocrine motility factor. The ATXβLPA signalling axis has emerged as an important player in many types of cancer. Indeed, aberrant expression of ATX and LPA receptors occurs during the development and progression of breast cancer. Importantly, expression of either ATX or LPA receptors in the mammary gland of transgenic mice is sufficient to induce the development of a high frequency of invasive and metastatic mammary cancers. The focus of research now turns to understanding the mechanisms by which ATX and LPA promote mammary tumourigenesis and metastasis. Targeting the ATXβLPA signalling axis for drug development may further improve outcomes in patients with breast cancer
Recommended from our members
Fibrosis Progression Rate in Biopsy-Proven Nonalcoholic Fatty Liver Disease Among People With Diabetes Versus People Without Diabetes: A Multicenter Study
Background & aimsThere are limited data regarding fibrosis progression in biopsy-proven nonalcoholic fatty liver disease (NAFLD) in people with type 2 diabetes mellitus (T2DM) compared with people without T2DM. We assessed the time to fibrosis progression in people with T2DM compared with people without T2DM in a large, multicenter, study of people with NAFLD who had paired liver biopsies.MethodsThis study included 447 adult participants (64% were female) with NAFLD who had paired liver biopsies more than 1 year apart. Liver histology was systematically assessed by a central pathology committee blinded to clinical data. The primary outcome was the cumulative incidence of a β₯1-stage increase in fibrosis in participants with T2DM compared with participants without T2DM.ResultsThe mean (SD) age and body mass index (calculated as weight in kilograms divided by the square of the height in meters) were 50.9 (11.5) years and 34.7 (6.3), respectively. The median time between biopsies was 3.3 years (interquartile range, 1.8-6.1 years). Participants with T2DM had a significantly higher cumulative incidence of fibrosis progression at 4 years (24% vs 20%), 8 years (60% vs 50%), and 12 years (93% vs 76%) (P = .005). Using a multivariable Cox proportional hazards model adjusted for multiple confounders, T2DM remained an independent predictor of fibrosis progression (adjusted hazard ratio, 1.69; 95% CI, 1.17-2.43; P = .005). The cumulative incidence of fibrosis regression by β₯1 stage was similar in participants with T2DM compared with participants without T2DM (P = .24).ConclusionsIn this large, multicenter cohort study of well-characterized participants with NAFLD and paired liver biopsies, we found that fibrosis progressed faster in participants with T2DM compared with participants without T2DM. These data have important implications for clinical practice and trial design
Aggravation of Chronic Stress Effects on Hippocampal Neurogenesis and Spatial Memory in LPA1 Receptor Knockout Mice
The lysophosphatidic acid LPAβ receptor regulates plasticity and neurogenesis in the adult hippocampus. Here, we studied whether absence of the LPAβ receptor modulated the detrimental effects of chronic stress on hippocampal neurogenesis and spatial memory.Male LPAβ-null (NULL) and wild-type (WT) mice were assigned to control or chronic stress conditions (21 days of restraint, 3 h/day). Immunohistochemistry for bromodeoxyuridine and endogenous markers was performed to examine hippocampal cell proliferation, survival, number and maturation of young neurons, hippocampal structure and apoptosis in the hippocampus. Corticosterone levels were measured in another a separate cohort of mice. Finally, the hole-board test assessed spatial reference and working memory. Under control conditions, NULL mice showed reduced cell proliferation, a defective population of young neurons, reduced hippocampal volume and moderate spatial memory deficits. However, the primary result is that chronic stress impaired hippocampal neurogenesis in NULLs more severely than in WT mice in terms of cell proliferation; apoptosis; the number and maturation of young neurons; and both the volume and neuronal density in the granular zone. Only stressed NULLs presented hypocortisolemia. Moreover, a dramatic deficit in spatial reference memory consolidation was observed in chronically stressed NULL mice, which was in contrast to the minor effect observed in stressed WT mice.These results reveal that the absence of the LPAβ receptor aggravates the chronic stress-induced impairment to hippocampal neurogenesis and its dependent functions. Thus, modulation of the LPAβ receptor pathway may be of interest with respect to the treatment of stress-induced hippocampal pathology
Multiple Organ System Defects and Transcriptional Dysregulation in the Nipbl+/β Mouse, a Model of Cornelia de Lange Syndrome
Cornelia de Lange Syndrome (CdLS) is a multi-organ system birth defects disorder linked, in at least half of cases, to heterozygous mutations in the NIPBL gene. In animals and fungi, orthologs of NIPBL regulate cohesin, a complex of proteins that is essential for chromosome cohesion and is also implicated in DNA repair and transcriptional regulation. Mice heterozygous for a gene-trap mutation in Nipbl were produced and exhibited defects characteristic of CdLS, including small size, craniofacial anomalies, microbrachycephaly, heart defects, hearing abnormalities, delayed bone maturation, reduced body fat, behavioral disturbances, and high mortality (75β80%) during the first weeks of life. These phenotypes arose despite a decrease in Nipbl transcript levels of only βΌ30%, implying extreme sensitivity of development to small changes in Nipbl activity. Gene expression profiling demonstrated that Nipbl deficiency leads to modest but significant transcriptional dysregulation of many genes. Expression changes at the protocadherin beta (Pcdhb) locus, as well as at other loci, support the view that NIPBL influences long-range chromosomal regulatory interactions. In addition, evidence is presented that reduced expression of genes involved in adipogenic differentiation may underlie the low amounts of body fat observed both in Nipbl+/β mice and in individuals with CdLS
- β¦