676 research outputs found

    In Vivo Imaging of Transplanted Islets with ^(64)Cu-DO3A-VS-Cys^(40)-Exendin-4 by Targeting GLP-1 Receptor

    Get PDF
    Glucagon-like peptide 1 receptor (GLP-1R) is highly expressed in pancreatic islets, especially on β-cells. Therefore, a properly labeled ligand that binds to GLP-1R could be used for in vivo pancreatic islet imaging. Because native GLP-1 is degraded rapidly by dipeptidyl peptidase-IV (DPP-IV), a more stable agonist of GLP-1 such as Exendin-4 is a preferred imaging agent. In this study, DO3A-VS-Cys^(40)-Exendin-4 was prepared through the conjugation of DO3A-VS with Cys^(40)-Exendin-4. The in vitro binding affinity of DO3A-VS-Cys^(40)-Exendin-4 was evaluated in INS-1 cells, which overexpress GLP-1R. After ^(64)Cu labeling, biodistribution studies and microPET imaging of ^(64)Cu-DO3A-VS-Cys^(40)-Exendin-4 were performed on both subcutaneous INS-1 tumors and islet transplantation models. The subcutaneous INS-1 tumor was clearly visualized with microPET imaging after the injection of ^(64)Cu-DO3A-VS-Cys^(40)-Exendin-4. GLP-1R positive organs, such as pancreas and lung, showed high uptake. Tumor uptake was saturable, reduced dramatically by a 20-fold excess of unlabeled Exendin-4. In the intraportal islet transplantation models, ^(64)Cu-DO3A-VS-Cys^(40)-Exendin-4 demonstrated almost two times higher uptake compared with normal mice. ^(64)Cu-DO3A-VS-Cys^(40)-Exendin-4 demonstrated persistent and specific uptake in the mouse pancreas, the subcutaneous insulinoma mouse model, and the intraportal human islet transplantation mouse model. This novel PET probe may be suitable for in vivo pancreatic islets imaging in the human

    Developing Effective Alzheimer's Disease Therapies: Clinical Experience and Future Directions

    Get PDF
    Alzheimer's disease (AD) clinical trials, focused on disease modifying drugs and conducted in patients with mild to moderate AD, as well as prodromal (early) AD, have failed to reach efficacy endpoints in improving cognitive function in most cases to date or have been terminated due to adverse events. Drugs that have reached clinical stage were reviewed using web resources (such as clinicaltrials.gov, alzforum.org, company press releases, and peer reviewed literature) to identify late stage (Phase II and Phase III) efficacy clinical trials and summarize reasons for their failure. For each drug, only the latest clinical trials and ongoing trials that aimed at improving cognitive function were included in the analysis. Here we highlight the potential reasons that have hindered clinical success, including clinical trial design and choice of outcome measures, heterogeneity of patient populations, difficulties in diagnosing and staging the disease, drug design, mechanism of action, and toxicity related to the long-term use. We review and suggest approaches for AD clinical trial design aimed at improving our ability to identify novel therapies for this devastating disease

    Clusters of Extragalactic Ultra Compact HII Regions

    Get PDF
    We report on the detection of optically thick free-free radio sources in the galaxies M33, NGC 253, and NGC 6946 using data in the literature. We interpret these sources as being young, embedded star birth regions, which are likely to be clusters of ultracompact HII regions. All 35 of the sources presented in this article have positive radio spectral indices alpha>0 suggesting an optically thick thermal bremsstrahlung emission arising in the HII region surrounding hot stars. Energy requirements indicate a range of a several to >500 O7V star equivalents powering each HII region. Assuming a Salpeter IMF, this corresponds to integrated stellar masses of 0.1--60,000 Msun. For roughly half of the sources in our sample, there is no obvious optical counterpart, giving further support for their deeply embedded nature. Their luminosities and radio spectral energy distributions are consistent with HII regions having electron densities from 1500 cm^-3 to 15000 cm^-3 and radii of 1 - 7 pc. We suggest that the less luminous of these sources are extragalactic ultracompact HII region complexes, those of intermediate luminosity are similar to W49 in the Galaxy, while the brightest will be counterparts to 30 Doradus. These objects constitute the lower mass range of extragalactic ``ultradense HII regions'' which we argue are the youngest stages of massive star cluster formation yet observed. This sample is beginning to fill in the continuum of objects between small associations of ultracompact HII regions and the massive extragalactic clusters that may evolve into globular clusters.Comment: 37 pages, uses AASTeX; scheduled to appear in ApJ v. 559 October 2001. Full postscript version available from http://www.astro.wisc.edu/~chip/Papers/Johnson_Kobulnicky_etal_ApJ559.ps.g

    Quantitative, Simultaneous PET/MRI for Intratumoral Imaging with an MRI-Compatible PET Scanner

    Get PDF
    Noninvasive methods are needed to explore the heterogeneous tumor microenvironment and its modulation by therapy. Hybrid PET/MRI systems are being developed for small-animal and clinical use. The advantage of these integrated systems depends on their ability to provide MR images that are spatially coincident with simultaneously acquired PET images, allowing combined functional MRI and PET studies of intratissue heterogeneity. Although much effort has been devoted to developing this new technology, the issue of quantitative and spatial fidelity of PET images from hybrid PET/MRI systems to the tissues imaged has received little attention. Here, we evaluated the ability of a first-generation, small-animal MRI-compatible PET scanner to accurately depict heterogeneous patterns of radiotracer uptake in tumors. Methods: Quantitative imaging characteristics of the MRI-compatible PET (PET/MRI) scanner were evaluated with phantoms using calibration coefficients derived from a mouse-sized linearity phantom. PET performance was compared with a commercial small-animal PET system and autoradiography in tumor-bearing mice. Pixel and structure-based similarity metrics were used to evaluate image concordance among modalities. Feasibility of simultaneous PET/MRI functional imaging of tumors was explored by following ^(64)Cu-labeled antibody uptake in relation to diffusion MRI using cooccurrence matrix analysis. Results: The PET/MRI scanner showed stable and linear response. Activity concentration recovery values (measured and true activity concentration) calculated for 4-mm-diameter rods within linearity and uniform activity rod phantoms were near unity (0.97 ± 0.06 and 1.03 ± 0.03, respectively). Intratumoral uptake patterns for both ^(18)F-FDG and a ^(64)Cu-antibody acquired using the PET/MRI scanner and small-animal PET were highly correlated with autoradiography (r > 0.99) and with each other (r = 0.97 ± 0.01). On the basis of these data, we performed a preliminary study comparing diffusion MRI and radiolabeled antibody uptake patterns over time and visualized movement of antibodies from the vascular space into the tumor mass. Conclusion: The MRI-compatible PET scanner provided tumor images that were quantitatively accurate and spatially concordant with autoradiography and the small-animal PET examination. Cooccurrence matrix approaches enabled effective analysis of multimodal image sets. These observations confirm the ability of the current simultaneous PET/MRI system to provide accurate observations of intratumoral function and serve as a benchmark for future evaluations of hybrid instrumentation

    The Evolution of Cool Algols

    Get PDF
    We apply a model of dynamo-driven mass loss, magnetic braking and tidal friction to the evolution of stars with cool convective envelopes; in particular we apply it to binary stars where the combination of magnetic braking and tidal friction can cause angular-momentum loss from the {\it orbit}. For the present we consider the simplification that only one component of a binary is subject to these non-conservative effects, but we emphasise the need in some circumstances to permit such effects in {\it both} components. The model is applied to examples of (i) the Sun, (ii) BY Dra binaries, (iii) Am binaries, (iv) RS CVn binaries, (v) Algols, (vi) post-Algols. A number of problems regarding some of these systems appear to find a natural explanation in our model. There are indications from other systems that some coefficients in our model may vary by a factor of 2 or so from system to system; this may be a result of the chaotic nature of dynamo activity

    Signaling from β1- and β2-adrenergic receptors is defined by differential interactions with PDE4

    Get PDF
    β1- and β2-adrenergic receptors (βARs) are highly homologous, yet they play clearly distinct roles in cardiac physiology and pathology. Myocyte contraction, for instance, is readily stimulated by β1AR but not β2AR signaling, and chronic stimulation of the two receptors has opposing effects on myocyte apoptosis and cell survival. Differences in the assembly of macromolecular signaling complexes may explain the distinct biological outcomes. Here, we demonstrate that β1AR forms a signaling complex with a cAMP-specific phosphodiesterase (PDE) in a manner inherently different from a β2AR/β-arrestin/PDE complex reported previously. The β1AR binds a PDE variant, PDE4D8, in a direct manner, and occupancy of the receptor by an agonist causes dissociation of this complex. Conversely, agonist binding to the β2AR is a prerequisite for the recruitment of a complex consisting of β-arrestin and the PDE4D variant, PDE4D5, to the receptor. We propose that the distinct modes of interaction with PDEs result in divergent cAMP signals in the vicinity of the two receptors, thus, providing an additional layer of complexity to enforce the specificity of β1- and β2-adrenoceptor signaling

    N-band Observations of He 2-10: Unveiling the Dusty Engine of a Starburst Galaxy

    Get PDF
    To better understand the early stages of massive star cluster evolution we have obtained J,H,K', and N (10.8 micron) images of the nuclear region of the starburst galaxy He 2-10. The N-band images were obtained with the Gemini North telescope and reveal four of the five enshrouded clusters, or "ultradense HII regions" (UDHIIs), recently discovered in radio maps. None of these sources appears in either the optical HST images or the near-infrared images. They comprise about 60% of the total N-band flux from He 2-10 and, we suspect, a similar fraction of the total far infrared flux measured by IRAS. The inferred spectra of the UDHIIs are very similar to those of Galactic ultracompact HII regions and we have modeled the UDHIIs under the assumption that they are "scaled-up" versions of these objects. The bolometric luminosity of the brightest UDHII is estimated to be ~2x10^9 L_sun, and the total mass of the dust and gas is ~10^7 M_sun. The mass of the enshrouded stellar cluster must be > 2.5x10^6 M_sun and the age must be < 4.8x10^6 yr. All of the stellar clusters within the UDHIIs must have ages less than about 5x10^6 yr and masses greater than about 5x10^5 M_sun. The logarithmic ratios of the radio to far infrared flux densities for the individual UDHIIs, and He 2-10 as a whole, are significantly larger than the average for normal galaxies, but comparable to those for ultraluminous infrared galaxies. Large ratios for some starburst galaxies may indicate that a significant fraction of the far infrared flux arises from UDHIIs. If all of the far infrared flux from He 2-10 and other starbursts is produced by heavily obscured regions, the observed correlation between UV continuum slope and infrared-to-ultraviolet flux ratio in starbursts cannot be due primarily to UV reprocessing by dust in a foreground screen.Comment: 41 pages, 9 figure
    corecore