1,765 research outputs found

    Rare diseases leading to childhood Glaucoma. epidemiology, pathophysiogenesis, and management

    Get PDF
    Noteworthy heterogeneity exists in the rare diseases associated with childhood glaucoma. Primary congenital glaucoma is mostly sporadic; however, 10% to 40% of cases are familial. CYP1B1 gene mutations seem to account for 87% of familial cases and 27% of sporadic cases. Childhood glaucoma is classified in primary and secondary congenital glaucoma, further divided as glaucoma arising in dysgenesis associated with neural crest anomalies, phakomatoses, metabolic disorders, mitotic diseases, congenital disorders, and acquired conditions. Neural crest alterations lead to the wide spectrum of iridocorneal trabeculodysgenesis. Systemic diseases associated with childhood glaucoma include the heterogenous group of phakomatoses where glaucoma is frequently encountered in the Sturge-Weber syndrome and its variants, in phakomatosis pigmentovascularis associated with oculodermal melanocytosis, and more rarely in neurofibromatosis type 1. Childhood glaucoma is also described in systemic disorders of mitotic and metabolic activity. Acquired secondary glaucoma has been associated with uveitis, trauma, drugs, and neoplastic diseases. A database research revealed reports of childhood glaucoma in rare diseases, which do not include glaucoma in their manifestation. These are otopalatodigital syndrome, complete androgen insensitivity, pseudotrisomy 13, Brachmann-de Lange syndrome, acrofrontofacionasal dysostosis, caudal regression syndrome, and Wolf-Hirschhorn syndrome

    A digital design process for shell structures

    Get PDF
    Over the last few decades, the design of freeform structures has undergone a radical change: powerful computational tools within parametric environment associated with digital fabrication techniques are pushing the boundaries of architecture towards bold solutions. The present work proposes a digital workflow for a shell in compression. The design process starts with the form-finding phase, which generates a hanging model. Through the interoperability of digital tools within parametric environment, optimization of the shape and structural analysis were carried out in order to investigate its behavior. The resulting surface is subject to tessellation, planarization of its cells that take into account fabrication constrains, and the 3D generation of panels composing the thickness of the structure. In order to accomplish an easier assembly process a hypothesis of a puzzle-like connection system was developed. The whole process provides a guidance for the design of freeform shell by the creation of a “customized” digital workflow implemented by digital fabrication techniques for the realization phase

    Structural properties of the linkers connecting the n- and c- terminal domains in the mocr bacterial transcriptional regulators

    Get PDF
    Peptide inter-domain linkers are peptide segments covalently linking two adjacent domains within a protein. Linkers play a variety of structural and functional roles in naturally occurring proteins. In this work we analyze the sequence properties of the predicted linker regions of the bacterial transcriptional regulators belonging to the recently discovered MocR subfamily of the GntR regulators. Analyses were carried out on the MocR sequences taken from the phyla Actinobacteria, Firmicutes, Alpha-, Beta- and Gammaproteobacteria. The results suggest that MocR linkers display phylum-specific characteristics and unique features different from those already described for other classes of inter-domain linkers. They show an average length significantly higher: 31.8 ± 14.3 residues reaching a maximum of about 150 residues. Compositional propensities displayed general and phylum-specific trends. Pro is dominating in all linkers. Dyad propensity analysis indicate Pro–Pro as the most frequent amino acid pair in all linkers. Physicochemical properties of the linker regions were assessed using amino acid indices relative to different features: in general, MocR linkers are flexible, hydrophilic and display propensity for β-turn or coil conformations. Linker sequences are hypervariable: only similarities between MocR linkers from organisms related at the level of species or genus could be found with sequence searches. The results shed light on the properties of the linker regions of the new MocR subfamily of bacterial regulators and may provide knowledge-based rules for designing artificial linkers with desired properties. © 2016 The Author(s

    Will current electric vehicle policy lead to cost-effective electrification of passenger car transport?

    No full text
    Encouraged by the falling cost of batteries, electric vehicle (EV) policy today focuses on expediting electrification, paying comparatively little attention to the cost of the particular type of EVs and charging infrastructure deployed. This paper argues that, due to its strong influence on EV innovation paths, EV policy could be better designed if it paid more attention to cost and technology development risk. In particular, using a model that estimates the incremental cost of different EV and infrastructure mixes over the whole passenger car fleet, we find that EV policy with a strong bias towards long-range battery electric vehicles (BEVs) risks leading to higher costs of electrification in the medium term, possibly exceeding the ability of governments to sustain the necessary incentives until battery cost drops sufficiently. We also find that promoting a balanced mix of BEVs and plug-in hybrid electric vehicles (PHEVs) may set the electrification of passenger cars on a lower risk, lower cost path. Examining EV policy in the UK and in California, we find that it is generally not incompatible with achieving balanced mixes of BEVs and PHEVs. However some fine tuning would allow to better balance medium term risks and long term goals

    A novel scheme to detect optical DPSK signals

    Get PDF
    We propose and demonstrate a novel approach to detect optical differential phase-shift keying signals. The technique is based on differential phase-to-polarization conversion in a polarization-maintaining fiber, so that the polarization-modulated signal can be detected by using a polarizer and a common intensity modulation receiver

    Valproic acid neuroprotection in 6-OHDA lesioned rat, a model for parkinson's disease

    Get PDF
    Background: Valproic acid (VPA) a long standing anti-epileptic and anti-manic drug has been recently investigated as a neuroprotective molecule, in relation to its action as an inhibitor of histone deacetylases (HDACs), favoring relaxed configuration of chromatin and thus promoting gene transcription. Methods: In the present study, chronic administration of VPA added to the diet, was tested for neuroprotection in a rat model of Parkinson's disease. The model consists of multiple injections of the dopaminergic toxin, 6-hydroxydopamine (6-OHDA), unilaterally in the striatum with consequent degeneration of the dopaminergic neurons originating the nigro-striatal pathway. This model of neurodegeneration is widely used as a reliable animal model for Parkinson's disease (PD). Results: Chronic VPA administration significantly reduced degeneration of dopaminergic neurons in the substantia nigra, and of dopaminergic terminals in the striatum, in rats subjected to the unilateral lesion of the nigrostriatal pathway. VPA treatment was also able to increase α-synuclein expression in the substantia nigra and to counteract the lesion-dependent decrease of the protein in the substantia nigra itself and in the striatum. Conclusions: Present data, which follow previous results obtained in the rotenone rat model of nigrostriatal degeneration, allow to propose VPA as a treatment to be tested for its effectiveness in other animal models of parkinsonism, in view of possible translation to patients
    corecore