18 research outputs found

    Phytoextraction of heavy metals from mine soils using hyperaccumulator plants.

    Full text link
    Phytoextraction is an environmental-friendly and cost-effective technology that uses metal hyperaccumulator plants to remove heavy metals from soils. The metals are absorbed by the roots, transported and accumulated in the aerial parts of the plants, which can be harvested and eliminated. The aim of this work was to study some hyperaccumulator species that could be useful to decontaminate mine soils and also to investigate the bioavailability and uptake of these metals by plants with the addition of organic amendments. Pot experiments were performed with soil samples collected from two mining areas in the north of Madrid, where there was an intense mining activity more than 50 years ago. Three species (Thlaspi arvense, Brassica juncea and Atriplex halimus) were grown under controlled conditions in pots filled with contaminated soils mixed with 0 Mg, 30 Mg and 60 Mg per hectare of two different organic amendments: a commercial compost made of pine bark, peat and wood fiber and other made of horse and sheep manure and wood fiber. Plants were harvested at the end of their crop cycle and were digested in order to measure metal concentration (Zn, Cu and Cd) in roots and shoots. Highest plant metal concentration was observed in pots treated with pine bark amendment and with pure soil due to an increase in metal bioavailability with decreasing pH. Also in those treatments the total plant biomass was lower, even some plants could not germinate. On the contrary, there was a lower metal concentration in plant tissues of pots with manure because its higher pH whereas plant growth was significantly larger so there was an incresing amount of metals removed from soil by plants. Comparing the three species results indicate a higher total metal uptake in A. halimus than B. juncea and T. arvense. In conclusion, results show that pH affects metal bioavailability and uptake by hyperaccumulator plants. Addition of organic amendments could be a successful technique for stabilization of metals in contaminated soils

    An assessment of Pleurotus ostreatus to remove sulfonamides, and its role as a biofilter based on its own spent mushroom substrate

    Full text link
    A double strategy based on the removal of sulfonamide antibiotics by Pleurotus ostreatus and adsorption on spent mushroom substrate was assessed to reclaim contaminated wastewater. P. ostreatus was firstly tested in a liquid medium fortified with five sulfonamides: sulfamethoxazole, sulfadiazine, sulfathiazole, sulfapyridine and sulfamethazine, to evaluate its capacity to remove them and to test for any adverse effects on fungal growth and for any reduction in residual antibiotic activity. P. ostreatus was effective in removing sulfonamides up to 83 to 91% of the applied doses over 14 days. The antibiotic activity of the sulfonamide residues was reduced by 50%. Sulfamethoxazole transformation products by laccase were identified, and the degradation pathway was proposed. In addition, P. ostreatus growth on a semi-solid medium of spent mushroom substrate and malt extract agar was used to develop a biofilter for the removal of sulfonamides from real wastewater. The biofilter was able to remove more than 90% of the sulfonamide concentrations over 24 h by combining adsorption and biodegradation mechanisms.This work was supported by the Ministry of Science and Innovation of Spain (Project AGL2016-78490-R

    Mycoremediation of soils polluted with trichloroethylene: first evidence of pleurotus genus effectiveness

    Full text link
    Trichloroethylene (TCE) is a proven carcinogenic chlorinated organic compound widely used as a solvent in industrial cleaning solutions; it is easily found in the soil, air, and water and is a hazardous environmental pollutant. Most studies have attempted to remove TCE from air and water using different anaerobic bacteria species. In addition, a few have used white-rot fungi, although there are hardly any in soil. The objective of the present work is to assess TCE removal efficiency using two species of the genus Pleurotus that have not been tested before: Pleurotus ostreatus and Pleurotus eryngii, growing on a sandy loam soil. These fungi presented different intra- and extracellular enzymatic systems (chytochrome P450 (CYP450), laccase, Mn peroxidase (MnP)) capable of aerobically degrading TCE to less harmful compounds. The potential toxicity of TCE to P. ostreatus and P. eryngii was firstly tested in a TCE-spiked liquid broth (70 mg L−1 and 140 mg L−1) for 14 days. Then, both fungi were assessed for their ability to degrade the pollutant in sandy loam soil spiked with 140 mg kg−1 of TCE. P. ostreatus and P. eryngii improved the natural dissipation of TCE from soil by 44%. Extracellular enzymes were poorly expressed, but mainly in the presence of the contaminant, in accordance with the hypothesis of the involvement of CYP450

    Enhancement of methane production from livestock manure with pre-treatments based in fungi of genus Pleurotus

    Full text link
    Livestock manure, traditionally used just as fertilizer, can be energetically valued to produce biogas as an attractive alternative, since nowadays, energy production and its cost stands for a pressing problem around the world. Nevertheless, the presence of lignin in manure hinders the production of methane. This could be improved by pre-treating the manure with ligninolytic fungi, able to break lignin and therefore facilitate the hydrolysis step for the hydrolytic bacteria, yielding higher volumes of biomethane. Three strategies of incubation with living fungi of genus Pleurotus were evaluated to enhance methane production from livestock manure mixed with bedding material: short term (two weeks 2L container) and long term (two months 400 L container) and 24 h (2 L container) with a crude water extraction of Pleurotus extracellular enzymes. The positive effect of the fungal treatment was observed in the three strategies obtaining an increase in methane production with respect to the control manure of 7% at short term, 111% at long term and 173% (crude enzymatic extract). Consequently, the strategy of using crude enzyme extracts from Pleurotus to improve hydrolysis step as pre-treatment of manure should be considered as a novel, easy, cheap and promising tool to optimize methane productionThis research was funded by a contract with the company Kepler Ingeniería y Ecogestión SL managed by Foundation from University Autónoma of Madrid (FUAM) and with reference 01091

    Use of leonardite humic acids for metals extraction in mine soils

    Full text link
    Mine soils usually exhibit high levels of metal contamination. Phytoextraction is an environmental friendly and cost-effective technique for soil remediation, which consists of removal of metals from soil by plant roots and their translocation to aerial parts. Humic substances used as soil amendments could enhance metal mobility and uptake by plants due to formation of soluble complexes. This study aimed to evaluate the effects of a commercial humic acid derived from leonardite added at different rates and pH to a contaminated soil from an abandoned copper mine in Colmenarejo (Madrid, Spain) on metal mobility. The objective was to assess its potential as soil amendment for phytoextraction. Soil samples (10 g) were sequentially extracted 6 times with 20 mL of solution containing humic acid at: 0 (control), 0.25, 1, and 5 g L-1. Solutions were previously adjusted to pH: 4, 6.1 (natural soil pH) and 8. Extracts were analyzed for pH, electrical conductivity, metal concentrations (Cu and Zn) and ratio of absorption at 465 to 665 nm (E4/E6) as an indirect measure of soluble organic matter content. Results showed that addition of higher doses of humic acid increased soluble organic matter content, and therefore extracted a higher concentration of Zn and particularly Cu, due to formation of soluble humic complexes. At higher pH humic acid became more soluble and managed to extract increasing amounts of metals, except in the highest humic acid treatment due to its precipitation or flocculation. The use of this humic acid as soil amendment could promote metal phytoextraction by tolerant plants in contaminated mine soils, but it should be applied at proper pH and other soil conditions to avoid risk of metal leaching to groundwate

    Chemical speciation and mobilization of copper and zinc in naturally contaminated mine soils with citric and tartaric acids

    Full text link
    A one-step extraction procedure and a leaching column experiment were performed to assess the effects of citric and tartaric acids on Cu and Zn mobilization in naturally contaminated mine soils to facilitate assisted phytoextraction. A speciation modeling of the soil solution and the metal fractionation of soils were performed to elucidate the chemical processes that affected metal desorption by organic acids. Different extracting solutions were prepared, all of which contained 0.01 M KNO3 and different concentrations of organic acids: control without organic acids, 0.5 mM citric, 0.5 mM tartaric, 10 mM citric, 10 mM tartaric, and 5 mM citric +5 mM tartaric. The results of the extraction procedure showed that higher concentrations of organic acids increased metal desorption, and citric acid was more effective at facilitating metal desorption than tartaric acid. Metal desorption was mainly influenced by the decreasing pH and the dissolution of Fe and Mn oxides, not by the formation of soluble metal–organic complexes as was predicted by the speciation modeling. The results of the column study reported that low concentrations of organic acids did not significantly increase metal mobilization and that higher doses were also not able to mobilize Zn. However, 5–10 mM citric acid significantly promoted Cu mobilization (from 1 mg kg−1 in the control to 42 mg kg−1 with 10 mM citric acid) and reduced the exchangeable (from 21 to 3 mg kg−1) and the Fe and Mn oxides (from 443 to 277 mg kg−1) fractions. Citric acid could efficiently facilitate assisted phytoextraction techniques

    Bioavailability and extraction of heavy metals from contaminated soil by Atriplex halimus

    Full text link
    Pot experiments were performed to evaluate the phytoremediation capacity of plants of Atriplex halimus grown in contaminated mine soils and to investigate the effects of organic amendments on the metal bioavailability and uptake of these metals by plants. Soil samples collected from abandoned mine sites north of Madrid (Spain) were mixed with 0, 30 and 60 Mg ha?1 of two organic amendments, with different pH and nutrients content: pine-bark compost and horse- and sheep-manure compost. The increasing soil organic matter content and pH by the application of manure amendment reduced metal bioavailability in soil stabilising them. The proportion of Cu in the most bioavailable fractions (sum of the water-soluble, exchangeable, acid-soluble and Fe?Mn oxides fractions) decreased with the addition of 60 Mg ha?1 of manure from 62% to 52% in one of the soils studied and from 50% to 30% in the other. This amendment also reduced Zn proportion in water-soluble and exchangeable fractions from 17% to 13% in one of the soils. Manure decreased metal concentrations in shoots of A. halimus, from 97 to 35 mg kg?1 of Cu, from 211 to 98 mg kg?1 of Zn and from 1.4 to 0.6 mg kg?1 of Cd. In these treatments there was a higher plant growth due to the lower metal toxicity and the improvement of nutrients content in soil. This higher growth resulted in a higher total metal accumulation in plant biomass and therefore in a greater amount of metals removed from soil, so manure could be useful for phytoextraction purposes. This amendment increased metal accumulation in shoots from 37 to 138 mg pot?1 of Cu, from 299 to 445 mg pot?1 of Zn and from 1.8 to 3.7 mg pot?1 of Cd. Pine bark amendment did not significantly alter metal availability and its uptake by plants. Plants of A. halimus managed to reduce total Zn concentration in one of the soils from 146 to 130 mg kg?1, but its phytoextraction capacity was insufficient to remediate contaminated soils in the short-to-medium term. However, A. halimus could be, in combination with manure amendment, appropriate for the phytostabilization of metals in mine soils

    Phytostabilization of metals in mine soils using Brassica juncea in combination with organic amendments

    Full text link
    Background and aims The high metal bioavailability and the poor conditions of mine soils yield a low plant biomass, limiting the application of phytoremediation techniques. A greenhouse experiment was performed to evaluate the effects of organic amendments on metal stabilization and the potential of Brassica juncea L. for phytostabilization in mine soils. Methods Plants were grown in pots filled with soils collected from two mine sites located in Central Spain mixed with 0, 30 and 60 tha?1 of pine bark compost and horse- and sheep-manure compost. Plant biomass and metal concentrations in roots and shoots were measured. Metal bioavailability was assessed using a rhizosphere-based method (rhizo), which consists of a mixture of low-molecular-weight organic acids to simulate root exudates. Results Manure reduced metal concentrations in shoots (10?50 % reduction of Cu and 40?80 % of Zn in comparison with non-amended soils), bioconcentration factor (10?50 % of Cu and 40?80 % of Zn) and metal bioavailability in soil (40?50 % of Cu and 10?30 % of Zn) due to the high pH and the contribution of organic matter. Manure improved soil fertility and was also able to increase plant biomass (5?20 times in shoots and 3?30 times in roots), which resulted in a greater amount of metals removed from soil and accumulated in roots (increase of 2?7 times of Cu and Zn). Plants grown in pine bark treatments and in non-amended soils showed a limited biomass and high metal concentrations in shoots. Conclusions The addition of manure could be effective for the stabilization of metals and for enhancing the phytostabilization ability of B. juncea in mine soils. In this study, this species resulted to be a potential candidate for phytostabilization in combination with manure, differing from previous results, in which B. juncea had been recognized as a phytoextraction plant

    On the front labelling of food: nutritional traffic lights, Nutri-Score and others

    Get PDF
    The labelling of packaged foods is a universal concern present in the national legislation of most countries. Regulation (EU) No. 1169/20111 on food information provided to the consumer allows the possibility of using a front nutrition label FOPL (Front-of-Pack nutrition label) in a complementary way to the mandatory nutrition information, on a voluntary basis, without replacing it, as long as the requirements mentioned in said Regulation are met, do not mislead the consumer are not ambiguous or confused and are based on relevant scientific data.Peer reviewe

    The front labelling of food: Nutritional traffic lights, nutri-score and others

    Get PDF
    The labelling of packaged foods is a universal concern present in the national legislation of most countries. Regulation (EU) No. 1169/20112 on food information provided to the consumer allows the possibility of using a front nutrition label FOPL (Front-of-Pack nutrition label) in a complementary way to the mandatory nutrition information, on a voluntary basis, without replacing it, as long as the requirements mentioned in said Regulation are met, do not mislead the consumer, are not ambiguous or confusing and are based on relevant scientific data. The application of a "front" nutritional label is interesting in principle because it is more visible, unlike the mandatory nutritional label, which is located on the back or side of the packages. However, on the other hand, it can mislead the consumer should they intend to value the product nutritionally apart from the diet as a whole. An effective policy for the health of the citizen must be based on adequate training in food and consumption, starting from school age and reaching to society in general, contemplating the insertion of the variety of products in the variety of possible diets, according to the nutritional needs of the citizen, based on age, sex, lifestyle and sustainability. In this context, front labelling must be integrated into a global strategy to be effective and avoid being counterproductive. This document aims to offer food for thought to people, institutions and companies that have tomake decisions regarding food labelling.Peer reviewe
    corecore