835 research outputs found

    Singlet vs Nonsinglet Perturbative Renormalization factors of Staggered Fermion Bilinears

    Full text link
    In this paper we present the perturbative computation of the difference between the renormalization factors of flavor singlet (∑fψˉfΓψf\sum_f\bar\psi_f\Gamma\psi_f, ff: flavor index) and nonsinglet (ψˉf1Γψf2,f1≠f2\bar\psi_{f_1} \Gamma \psi_{f_2}, f_1 \neq f_2) bilinear quark operators (where Γ=1, γ5, γμ, γ5 γμ, γ5 σμ ν\Gamma = \mathbb{1},\,\gamma_5,\,\gamma_{\mu},\,\gamma_5\,\gamma_{\mu},\, \gamma_5\,\sigma_{\mu\,\nu}) on the lattice. The computation is performed to two loops and to lowest order in the lattice spacing, using Symanzik improved gluons and staggered fermions with twice stout-smeared links. The stout smearing procedure is also applied to the definition of bilinear operators. A significant part of this work is the development of a method for treating some new peculiar divergent integrals stemming from the staggered formalism. Our results can be combined with precise simulation results for the renormalization factors of the nonsinglet operators, in order to obtain an estimate of the renormalization factors for the singlet operators. The results have been published in Physical Review D.Comment: 8 pages, 3 figures, 2 tables, Proceedings of the 35th International Symposium on Lattice Field Theory, 18-24 June 2017, Granada, Spai

    Nucleon form factors and moments of parton distributions in twisted mass lattice QCD

    Full text link
    We present results on the electroweak form factors and on the lower moments of parton distributions of the nucleon, within lattice QCD using two dynamical flavors of degenerate twisted mass fermions. Results are obtained on lattices with three different values of the lattice spacings, namely a=0.089 fm, a=0.070 fm and a=0.056 fm, allowing the investigation of cut-off effects. The volume dependence is examined by comparing results on two lattices of spatial length L=2.1 fm and L=2.8 fm. The simulations span pion masses in the range of 260-470 MeV. Our results are renormalized non-perturbatively and the values are given in the MS-scheme at a scale mu=2 GeV.Comment: Talk presented in the XXIst International Europhysics Conference on High Energy Physics, 21-27 July 2011, Grenoble, Rhones Alpes Franc

    Perturbatively improving renormalization constants

    Full text link
    Renormalization factors relate the observables obtained on the lattice to their measured counterparts in the continuum in a suitable renormalization scheme. They have to be computed very precisely which requires a careful treatment of lattice artifacts. In this work we present a method to suppress these artifacts by subtracting one-loop contributions proportional to the square of the lattice spacing calculated in lattice perturbation theory.Comment: 7 pages, 2 figures, LATTICE 201

    Renormalization of local quark-bilinear operators for Nf=3 flavors of SLiNC fermions

    Get PDF
    The renormalization factors of local quark-bilinear operators are computed non-perturbatively for Nf=3N_f=3 flavors of SLiNC fermions, with emphasis on the various procedures for the chiral and continuum extrapolations. The simulations are performed at a lattice spacing a=0.074a=0.074 fm, and for five values of the pion mass in the range of 290-465 MeV, allowing a safe and stable chiral extrapolation. Emphasis is given in the subtraction of the well-known pion pole which affects the renormalization factor of the pseudoscalar current. We also compute the inverse propagator and the Green's functions of the local bilinears to one loop in perturbation theory. We investigate lattice artifacts by computing them perturbatively to second order as well as to all orders in the lattice spacing. The renormalization conditions are defined in the RI′'-MOM scheme, for both the perturbative and non-perturbative results. The renormalization factors, obtained at different values of the renormalization scale, are translated to the MSˉ{\bar{\rm MS}} scheme and are evolved perturbatively to 2 GeV. Any residual dependence on the initial renormalization scale is eliminated by an extrapolation to the continuum limit. We also study the various sources of systematic errors. Particular care is taken in correcting the non-perturbative estimates by subtracting lattice artifacts computed to one loop perturbation theory using the same action. We test two different methods, by subtracting either the O(g2 a2){\cal O}(g^2\,a^2) contributions, or the complete (all orders in aa) one-loop lattice artifacts.Comment: 33 pages, 27 figures, 6 table

    Culture and psychopathology: an attempt at reconsidering the role of social learning

    Get PDF
    This paper proposes a model for developmental psychopathology that is informed by recent research suggestive of a single model of mental health disorder (the p factor) and seeks to integrate the role of the wider social and cultural environment into our model, which has previously been more narrowly focused on the role of the immediate caregiving context. Informed by recently emerging thinking on the social and culturally driven nature of human cognitive development, the ways in which humans are primed to learn and communicate culture, and a mentalizing perspective on the highly intersubjective nature of our capacity for affect regulation and social functioning, we set out a cultural-developmental approach to psychopathology

    Nucleon scalar and tensor charges using lattice QCD simulations at the physical value of the pion mass

    Full text link
    We present results on the light, strange and charm nucleon scalar and tensor charges from lattice QCD, using simulations with Nf=2N_f=2 flavors of twisted mass Clover-improved fermions with a physical value of the pion mass. Both connected and disconnected contributions are included, enabling us to extract the isoscalar, strange and charm charges for the first time directly at the physical point. Furthermore, the renormalization is computed non-perturbatively for both isovector and isoscalar quantities. We investigate excited state effects by analyzing several sink-source time separations and by employing a set of methods to probe ground state dominance. Our final results for the scalar charges are gSu=5.20(42)(15)(12)g_S^u = 5.20(42)(15)(12), gSd=4.27(26)(15)(12)g_S^d = 4.27(26)(15)(12), gSs=0.33(7)(1)(4)g_S^s=0.33(7)(1)(4), gSc=0.062(13)(3)(5)g_S^c=0.062(13)(3)(5) and for the tensor charges gTu=0.782(16)(2)(13)g_T^u = 0.782(16)(2)(13), gTd=−0.219(10)(2)(13)g_T^d = -0.219(10)(2)(13), gTs=−0.00319(69)(2)(22)g_T^s=-0.00319(69)(2)(22), gTc=−0.00263(269)(2)(37)g_T^c=-0.00263(269)(2)(37) in the MS‾\overline{\rm MS} scheme at 2~GeV. The first error is statistical, the second is the systematic error due to the renormalization and the third the systematic arising from possible contamination due to the excited states.Comment: 20 pages and 13 figure
    • …
    corecore