1,383 research outputs found
Analysis of Limitations Imposed on One-Spool Turbojet-Engine Designs by Turbines Having Downstream Stators at 0, 2.0, and 2.8 Flight Mach Numbers
Limitations on turbojet engine design by turbines with downstream stator
Three-electron anisotropic quantum dots in variable magnetic fields: exact results for excitation spectra, spin structures, and entanglement
Exact-diagonalization calculations for N=3 electrons in anisotropic quantum
dots, covering a broad range of confinement anisotropies and strength of
inter-electron repulsion, are presented for zero and low magnetic fields. The
excitation spectra are analyzed as a function of the strength of the magnetic
field and for increasing quantum-dot anisotropy. Analysis of the intrinsic
structure of the many-body wave functions through spin-resolved two-point
correlations reveals that the electrons tend to localize forming Wigner
molecules. For certain ranges of dot parameters (mainly at strong anisotropy),
the Wigner molecules acquire a linear geometry, and the associated wave
functions with a spin projection S_z=1/2 are similar to the representative
class of strongly entangled states referred to as W-states. For other ranges of
parameters (mainly at intermediate anisotropy), the Wigner molecules exhibit a
more complex structure consisting of two mirror isosceles triangles. This
latter structure can be viewed as an embryonic unit of a zig-zag Wigner crystal
in quantum wires. The degree of entanglement in three-electron quantum dots can
be quantified through the use of the von Neumann entropy.Comment: To appear in Physical Review B. REVTEX4. 13 pages with 16 color
figures. To download a copy with higher-quality figures, go to publication
#78 in http://www.prism.gatech.edu/~ph274cy
Structural properties of electrons in quantum dots in high magnetic fields: Crystalline character of cusp states and excitation spectra
The crystalline or liquid character of the downward cusp states in N-electron
parabolic quantum dots (QD's) at high magnetic fields is investigated using
conditional probability distributions obtained from exact diagonalization.
These states are of crystalline character for fractional fillings covering both
low and high values, unlike the liquid Jastrow-Laughlin wave functions, but in
remarkable agreement with the rotating-Wigner-molecule ones [Phys. Rev. B 66,
115315 (2002)]. The crystalline arrangement consists of concentric polygonal
rings that rotate independently of each other, with the electrons on each ring
rotating coherently. We show that the rotation stabilizes the Wigner molecule
relative to the static one defined by the broken-symmetry
unrestricted-Hartree-Fock solution. We discuss the non-rigid behavior of the
rotating Wigner molecule and pertinent features of the excitation spectrum,
including the occurrence of a gap between the ground and first excited states
that underlies the incompressibility of the system. This leads us to conjecture
that the rotating crystal (and not the static one) remains the relevant ground
state for low fractional fillings even at the thermodynamic limit.Comment: Published version. Typos corrected. REVTEX4. 10 pages with 8
postscript figures (5 in color). For related papers, see
http://www.prism.gatech.edu/~ph274cy
Bone mineral density in patients with inherited bone marrow failure syndromes.
BackgroundPatients with inherited bone marrow failure syndromes (IBMFS) may have several risk factors for low bone mineral density (BMD). We aimed to evaluate the prevalence of low BMD in IBMFS and determine the associated risk factors.MethodsPatients with IBMFS with at least one dual-energy X-ray absorptiometry (DXA) scan were evaluated. Diagnosis of each IBMFS, Fanconi anemia (FA), dyskeratosis congenita, Diamond-Blackfan anemia, and Shwachman-Diamond syndrome was confirmed by syndrome-specific tests. Data were gathered on age, height, and clinical history. DXA scans were completed at the lumbar spine, femoral neck, and forearm. BMD was adjusted for height (HAZ) in children (age ≤20 years). Low BMD was defined as a BMD Z-score and HAZ ≤-2 in adults and children, respectively, in addition to patients currently on bisphosphonate therapy.ResultsNine of thirty-five adults (26%) and eleven of forty children (27%) had low BMD. Adults with FA had significantly lower BMD Z-scores than those with other diagnoses; however, HAZ did not vary significantly in children by diagnosis. Risk factors included hypogonadism, iron overload, and glucocorticoid use.ConclusionsAdults and children with IBMFS have high prevalence of low BMD. Prompt recognition of risk factors and management are essential to optimize bone health
Pseudohypoaldosteronism type 1 due to novel variants of SCNN1B gene.
UnlabelledAutosomal recessive pseudohypoaldosteronism type 1 (PHA1) is a rare disorder characterized by sodium wasting, failure to thrive, hyperkalemia, hypovolemia and metabolic acidosis. It is due to mutations in the amiloride-sensitive epithelial sodium channel (ENaC) and is characterized by diminished response to aldosterone. Patients may present with life-threatening hyperkalemia, which must be recognized and appropriately treated. A 32-year-old female was referred to the National Institutes of Health (NIH) for evaluation of hyperkalemia and muscle pain. Her condition started in the second week of life, when she was brought to an outside hospital lethargic and unresponsive. At that time, she was hypovolemic, hyperkalemic and acidotic, and was eventually treated with sodium bicarbonate and potassium chelation. At the time of the presentation to the NIH, her laboratory evaluation revealed serum potassium 5.1 mmol/l (reference range: 3.4-5.1 mmol/l), aldosterone 2800 ng/dl (reference range: ≤21 ng/dl) and plasma renin activity 90 ng/ml/h (reference range: 0.6-4.3 ng/ml per h). Diagnosis of PHA1 was suspected. Sequencing of the SCNN1B gene, which codes for ENaC, revealed that the patient is a compound heterozygote for two novel variants (c.1288delC and c.1466+1 G>A), confirming the suspected diagnosis of PHA1. In conclusion, we report a patient with novel variants of the SCNN1B gene causing PHA1 with persistent, symptomatic hyperkalemia.Learning pointsPHA1 is a rare genetic condition, causing functional abnormalities of the amiloride-sensitive ENaC.PHA1 was caused by previously unreported SCNN1B gene mutations (c.1288delC and c.1466+1 G>A).Early recognition of this condition and adherence to symptomatic therapy is important, as the electrolyte abnormalities found may lead to severe dehydration, cardiac arrhythmias and even death.High doses of sodium polystyrene sulfonate, sodium chloride and sodium bicarbonate are required for symptomatic treatment
Recommended from our members
ARMC 5 Variants and Risk of Hypertension in Blacks: MH- GRID Study.
Background We recently found that ARMC 5 variants may be associated with primary aldosteronism in blacks. We investigated a cohort from the MH - GRID (Minority Health Genomics and Translational Research Bio-Repository Database) and tested the association between ARMC 5 variants and blood pressure in black s. Methods and Results Whole exome sequencing data of 1377 black s were analyzed. Target single-variant and gene-based association analyses of hypertension were performed for ARMC 5, and replicated in a subset of 3015 individuals of African descent from the UK Biobank cohort. Sixteen rare variants were significantly associated with hypertension ( P=0.0402) in the gene-based (optimized sequenced kernel association test) analysis; the 16 and one other, rs116201073, together, showed a strong association ( P=0.0003) with blood pressure in this data set. The presence of the rs116201073 variant was associated with lower blood pressure. We then used human embryonic kidney 293 and adrenocortical H295R cells transfected with an ARMC 5 construct containing rs116201073 (c.*920T>C). The latter was common in both the discovery ( MH - GRID ) and replication ( UK Biobank) data and reached statistical significance ( P=0.044 [odds ratio, 0.7] and P=0.007 [odds ratio, 0.76], respectively). The allele carrying rs116201073 increased levels of ARMC5 mRNA , consistent with its protective effect in the epidemiological data. Conclusions ARMC 5 shows an association with hypertension in black s when rare variants within the gene are considered. We also identified a protective variant of the ARMC 5 gene with an effect on ARMC 5 expression confirmed in vitro. These results extend our previous report of ARMC 5's possible involvement in the determination of blood pressure in blacks
Theory and Applications of Robust Optimization
In this paper we survey the primary research, both theoretical and applied,
in the area of Robust Optimization (RO). Our focus is on the computational
attractiveness of RO approaches, as well as the modeling power and broad
applicability of the methodology. In addition to surveying prominent
theoretical results of RO, we also present some recent results linking RO to
adaptable models for multi-stage decision-making problems. Finally, we
highlight applications of RO across a wide spectrum of domains, including
finance, statistics, learning, and various areas of engineering.Comment: 50 page
Superflares on Ordinary Solar-Type Stars
Short duration flares are well known to occur on cool main-sequence stars as
well as on many types of `exotic' stars. Ordinary main-sequence stars are
usually pictured as being static on time scales of millions or billions of
years. Our sun has occasional flares involving up to ergs which
produce optical brightenings too small in amplitude to be detected in
disk-integrated brightness. However, we identify nine cases of superflares
involving to ergs on normal solar-type stars. That is,
these stars are on or near the main-sequence, are of spectral class from F8 to
G8, are single (or in very wide binaries), are not rapid rotators, and are not
exceedingly young in age. This class of stars includes many those recently
discovered to have planets as well as our own Sun, and the consequences for any
life on surrounding planets could be profound. For the case of the Sun,
historical records suggest that no superflares have occurred in the last two
millennia.Comment: 16 pages, accepted for publication in Ap
Recommended from our members
Corticotropinoma as a Component of Carney Complex.
Known germline gene abnormalities cause one-fifth of the pituitary adenomas in children and adolescents, but, in contrast with other pituitary tumor types, the genetic causes of corticotropinomas are largely unknown. In this study, we report a case of Cushing disease (CD) due to a loss-of-function mutation in PRKAR1A, providing evidence for association of this gene with a corticotropinoma. A 15-year-old male presenting with hypercortisolemia was diagnosed with CD. Remission was achieved after surgical resection of a corticotropin (ACTH)-producing pituitary microadenoma, but recurrence 3 years later prompted reoperation and radiotherapy. Five years after the original diagnosis, the patient developed ACTH-independent Cushing syndrome, and a diagnosis of primary pigmented nodular adrenocortical disease was confirmed. A PRKAR1A mutation (c.671delG, p.G225Afs*16) was detected in a germline DNA sample from the patient, which displayed loss of heterozygosity in the corticotropinoma. No other germline or somatic mutations of interest were found. As corticotropinomas are not a known component of Carney complex (CNC), we performed loss of heterozygosity and messenger RNA stability studies in the patient's tissues, and analyzed the effect of Prkar1a silencing on AtT-20/D16v-F2 mouse corticotropinoma cells. No PRKAR1A defects were found among 97 other pediatric CD patients studied. Our clinical case and experimental data support a role for PRKAR1A in the pathogenesis of a corticotroph cell tumor. This is a molecularly confirmed report of a corticotropinoma presenting in association with CNC. We conclude that germline PRKAR1A mutations are a novel, albeit apparently infrequent, cause of CD
- …