67 research outputs found

    Climate data and flowering times for 450 species from 1844 deepen the record of phenological change in southern Germany

    Get PDF
    PREMISE State-sponsored weather stations became ubiquitous by the 1880s, yet many old climate data and phenological observations still need to be digitized and made accessible. METHODS We here make available flowering times for 450 species of herbs and shrubs gathered in 1844 by Carl Friedrich Philipp von Martius (1794–1868), director of the Munich Botanical Garden. The data formed part of the world’s third-oldest phenological monitoring network as we explain in a brief overview of the history of such networks. Using data from one of the world’s oldest continuously functioning weather stations, Hohenpeißenberg, we relate temperature to flowering in three species with short flowering times and herbarium collections made since 1844 within the city’s perimeter, namely, Anemone patens, A. pulsatilla, and Arum maculatum. RESULTS Mean advances in flowering dates were 1.3–2.1 days/decade or 3.2–4.2 days/1°C warming. These advances are in keeping with similar advances in other European herbs during more recent periods. CONCLUSIONS Future studies might use the 1844 flowering data made available here as a source of information on the availability of particular flowers for specialized pollinators including insects looking for oviposition sites, such as the Psychoda flies that become trapped in Arum inflorescences. Another use of Martius’s 1844 data would be their incorporation into larger-scale analyses of flowering in southern-central Europe

    Global warming reduces leaf-out an flowering synchrony among individuals

    Get PDF
    The temporal overlap of phenological stages, phenological synchrony, crucially influences ecosystem functioning. For flowering, among-individual synchrony influences gene flow. For leaf-out, it affects interactions with herbivores and competing plants. If individuals differ in their reaction to the ongoing change in global climate, this should affect population-level synchrony. Here, we use climate-manipulation experiments, Pan-European long-term (>15 years) observations, and common garden monitoring data on up to 72 woody and herbaceous species to study the effects of increasing temperatures on the extent of leaf-out and flowering synchrony within populations. Warmer temperatures reduce in situ leaf-out and flowering synchrony by up to 55%, and experiments on European beech provide a mechanism for how individual differences in day-length and/or chilling sensitivity may explain this finding. The rapid loss of reproductive and vegetative synchrony in European plants predicts changes in their gene flow and trophic interactions, but community-wide consequences remain largely unknown

    Native diversity buffers against severity of non-native tree invasions

    Get PDF
    Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5,6,7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions.EEA Santa CruzFil: Delavaux, Camille S. Swiss Federal Institute of Technology. Institute of Integrative Biology; SuizaFil: Crowther, Thomas W. Swiss Federal Institute of Technology. Institute of Integrative Biology; SuizaFil: Zohner, Constantin M. Swiss Federal Institute of Technology. Institute of Integrative Biology; SuizaFil: Robmann, Niamh M. Swiss Federal Institute of Technology. Institute of Integrative Biology; SuizaFil: Lauber, Thomas. Swiss Federal Institute of Technology. Institute of Integrative Biology; SuizaFil: van den Hoogen, Johan. Swiss Federal Institute of Technology. Institute of Integrative Biology; SuizaFil: Kuebbing, Sara. Yale University. The Forest School at The Yale School of the Environment; Estados UnidosFil: Liang, Jingjing. Purdue University. Department of Forestry and Natural Resources; Estados UnidosFil: de-Miguel, Sergio. University of Lleida. Department of Crop and Forest Sciences; EspañaFil: de-Miguel, Sergio. Joint Research Unit CTFC–AGROTECNIO–CERCA; EspañaFil: Nabuurs, Gert-Jan. Wageningen University and Research; PaĂ­ses BajosFil: Peri, Pablo Luis. Instituto Nacional de TecnologĂ­a Agropecuaria (INTA). EstaciĂłn Experimental Agropecuaria Santa Cruz; Argentina.Fil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; Argentina.Fil: Peri, Pablo Luis. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina.Fil: Maynard, Daniel S. Swiss Federal Institute of Technology. Institute of Integrative Biology; SuizaFil: Maynard, Daniel S. University College London. Department of Genetics, Evolution, and Environment; Reino Unid

    Integrated global assessment of the natural forest carbon potential

    Get PDF
    Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2–5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellitederived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151–363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets.EEA Santa CruzFil: Mo, Lidong. Institute of Integrative Biology. ETH Zurich (Swiss Federal Institute of Technology); SuizaFil: Zohner, Constantin M. Institute of Integrative Biology. ETH Zurich (Swiss Federal Institute of Technology); SuizaFil: Reich, Peter B. University of Minnesota. Department of Forest Resources; Estados UnidosFil: Reich, Peter B. Western Sydney University. Hawkesbury Institute for the Environment; Australia.Fil: Reich, Peter B. University of Michigan. Institute for Global Change Biology; Estados UnidosFil: Liang, Jingjing. Purdue University. Department of Forestry and Natural Resources; Estados UnidosFil: de-Miguel, Sergio. University of Lleida. Department of Agricultural and Forest Sciences and Engineering; EspañaFil: de-Miguel, Sergio. Joint Research Unit CTFC - AGROTECNIO – CERCA; EspañaFil: Nabuurs, Gert-Jan. Wageningen University and Research; PaĂ­ses BajosFil: Renner, Susanne S. Washington University. Department of Biology; Estados UnidosFil: van den Hoogen, Johan. Institute of Integrative Biology. ETH Zurich (Swiss Federal Institute of Technology); SuizaFil: Araza, Arnan. Wageningen University and Research; PaĂ­ses BajosFil: Herold, Martin. Helmholtz GFZ German Research Centre for Geosciences. Remote Sensing and Geoinformatics Section; Alemania.Fil: Peri, Pablo Luis. Instituto Nacional de TecnologĂ­a Agropecuaria (INTA). EstaciĂłn Experimental Agropecuaria Santa Cruz; Argentina.Fil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral.; Argentina.Fil: Peri, Pablo Luis. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina.Fil: Crowther, Thomas W. Institute of Integrative Biology. ETH Zurich (Swiss Federal Institute of Technology); Suiz

    The global biogeography of tree leaf form and habit

    Get PDF
    Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17–34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling.EEA Santa CruzFil: Ma, Haozhi. Institute of Integrative Biology. ETH Zurich (Swiss Federal Institute of Technology); SuizaFil: Crowther, Thomas W. Institute of Integrative Biology. ETH Zurich (Swiss Federal Institute of Technology); SuizaFil: Mo, Lidong. Institute of Integrative Biology. ETH Zurich (Swiss Federal Institute of Technology); SuizaFil: Maynard, Daniel S. Institute of Integrative Biology. ETH Zurich (Swiss Federal Institute of Technology); SuizaFil: Maynard, Daniel S. University College London. Department of Genetics, Evolution, and Environment; Reino UnidoFil: Renner, Susanne S. Washington University. Department of Biology; Estados UnidosFil: van den Hoogen, Johan. Institute of Integrative Biology. ETH Zurich (Swiss Federal Institute of Technology); SuizaFil: Zou, Yibiao. Institute of Integrative Biology. ETH Zurich (Swiss Federal Institute of Technology); SuizaFil: Liang, Jingjing. Purdue University. Department of Forestry and Natural Resources; Estados UnidosFil: de-Miguel, Sergio. University of Lleida. Department of Agricultural and Forest Sciences and Engineering; EspañaFil: de-Miguel, Sergio. Joint Research Unit CTFC - AGROTECNIO – CERCA; EspañaFil: Nabuurs, Gert-Jan. Wageningen University and Research; PaĂ­ses BajosFil: Peri, Pablo Luis. Instituto Nacional de TecnologĂ­a Agropecuaria (INTA). EstaciĂłn Experimental Agropecuaria Santa Cruz; Argentina.Fil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral.; Argentina.Fil: Peri, Pablo Luis. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina.Fil: Zohner, Constantin M. Institute of Integrative Biology. ETH Zurich (Swiss Federal Institute of Technology); Suiz

    Native diversity buffers against severity of non-native tree invasions

    Get PDF
    Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2^{1,2}. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4^{3,4}. Here, leveraging global tree databases5–7^{5–7}, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions

    Inferring plant–plant interactions using remote sensing

    Get PDF
    Rapid technological advancements and increasing data availability have improved the capacity to monitor and evaluate Earth's ecology via remote sensing. However, remote sensing is notoriously ‘blind’ to fine-scale ecological processes such as interactions among plants, which encompass a central topic in ecology. Here, we discuss how remote sensing technologies can help infer plant–plant interactions and their roles in shaping plant-based systems at individual, community and landscape levels. At each of these levels, we outline the key attributes of ecosystems that emerge as a product of plant–plant interactions and could possibly be detected by remote sensing data. We review the theoretical bases, approaches and prospects of how inference of plant–plant interactions can be assessed remotely. At the individual level, we illustrate how close-range remote sensing tools can help to infer plant–plant interactions, especially in experimental settings. At the community level, we use forests to illustrate how remotely sensed community structure can be used to infer dominant interactions as a fundamental force in shaping plant communities. At the landscape level, we highlight how remotely sensed attributes of vegetation states and spatial vegetation patterns can be used to assess the role of local plant–plant interactions in shaping landscape ecological systems. Synthesis. Remote sensing extends the domain of plant ecology to broader and finer spatial scales, assisting to scale ecological patterns and search for generic rules. Robust remote sensing approaches are likely to extend our understanding of how plant–plant interactions shape ecological processes across scales—from individuals to landscapes. Combining these approaches with theories, models, experiments, data-driven approaches and data analysis algorithms will firmly embed remote sensing techniques into ecological context and open new pathways to better understand biotic interactions

    Integrated global assessment of the natural forest carbon potential

    Get PDF
    Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system 1. Remote-sensing estimates to quantify carbon losses from global forests 2–5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced 6 and satellite-derived approaches 2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151–363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea 2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets

    Native diversity buffers against severity of non-native tree invasions

    Get PDF
    Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2^{1,2}. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4^{3,4}. Here, leveraging global tree databases5,6,7^{5,6,7}, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions
    • 

    corecore