61 research outputs found

    Evaluating Lipid-Lowering Drug Targets for Parkinson's Disease Prevention with Mendelian Randomization

    Get PDF
    Long-term exposure to lipid-lowering drugs might affect Parkinson's disease (PD) risk. We conducted Mendelian randomization analyses where genetic variants indexed expected effects of modulating lipid-lowering drug targets on PD. Statin exposure was not predicted to increase PD risk, although results were not precise enough to support benefits for prevention clearly (odds ratio [OR] = 0.83; 95% confidence interval [CI] = 0.65, 1.07). Other target results were null, except for variants indicating Apolipoprotein-A5 or Apolipoprotein-C3 inhibition might confer protection. These findings suggest peripheral lipid variation may not have a prominent role in PD etiology, but some related drug targets could influence PD via alternate pathways. ANN NEUROL 2020;88:1043–104

    A two-stage meta-analysis identifies several new loci for Parkinson's Disease

    Get PDF
    A previous genome-wide association (GWA) meta-analysis of 12,386 PD cases and 21,026 controls conducted by the International Parkinson's Disease Genomics Consortium (IPDGC) discovered or confirmed 11 Parkinson's disease (PD) loci. This first analysis of the two-stage IPDGC study focused on the set of loci that passed genome-wide significance in the first stage GWA scan. However, the second stage genotyping array, the ImmunoChip, included a larger set of 1,920 SNPs selected on the basis of the GWA analysis. Here, we analyzed this set of 1,920 SNPs, and we identified five additional PD risk loci (combined p<5×10−10, PARK16/1q32, STX1B/16p11, FGF20/8p22, STBD1/4q21, and GPNMB/7p15). Two of these five loci have been suggested by previous association studies (PARK16/1q32, FGF20/8p22), and this study provides further support for these findings. Using a dataset of post-mortem brain samples assayed for gene expression (n = 399) and methylation (n = 292), we identified methylation and expression changes associated with PD risk variants in PARK16/1q32, GPNMB/7p15, and STX1B/16p11 loci, hence suggesting potential molecular mechanisms and candidate genes at these risk loci

    Heritability enrichment implicates microglia in Parkinson's disease pathogenesis

    Get PDF
    OBJECTIVE: Understanding how different parts of the immune system contribute to pathogenesis in Parkinson's disease is a burning challenge with important therapeutic implications. We studied enrichment of common variant heritability for Parkinson's disease stratified by immune and brain cell types. METHODS: We used summary statistics from the most recent meta-analysis of genome-wide association studies in Parkinson's disease and partitioned heritability using linkage disequilibrium score regression, stratified for specific cell types as defined by open chromatin regions. We also validated enrichment results using a polygenic risk score approach and intersected disease-associated variants with epigenetic data and expression quantitative loci to nominate and explore a putative microglial locus. RESULTS: We found significant enrichment of Parkinson's disease risk heritability in open chromatin regions of microglia and monocytes. Genomic annotations overlapped substantially between these two cell types, and only the enrichment signal for microglia remained significant in a joint model. We present evidence suggesting P2RY12, a key microglial gene and target for the anti-thrombotic agent clopidogrel, as the likely driver of a significant Parkinson's disease association signal on chromosome 3. INTERPRETATION: Our results provide further support for the importance of immune mechanisms in PD pathogenesis, highlight microglial dysregulation as a contributing etiological factor and nominate a targetable microglial gene candidate as a pathogenic player. Immune processes can be modulated by therapy, with potentially important clinical implications for future treatment in Parkinson's disease

    Polygenic risk of Parkinson disease is correlated with disease age at onset

    Get PDF
    We have investigated the polygenic architecture of Parkinson disease (PD) and have also explored the potential relationship between an individual's polygenic risk score and their disease age at onset

    Polygenic Resilience Modulates the Penetrance of Parkinson Disease Genetic Risk Factors

    Get PDF
    peer reviewedObjective: The aim of the current study is to understand why some individuals avoid developing Parkinson disease (PD) despite being at relatively high genetic risk, using the largest datasets of individual-level genetic data available. Methods: We calculated polygenic risk score to identify controls and matched PD cases with the highest burden of genetic risk for PD in the discovery cohort (International Parkinson's Disease Genomics Consortium, 7,204 PD cases and 9,412 controls) and validation cohorts (Comprehensive Unbiased Risk Factor Assessment for Genetics and Environment in Parkinson's Disease, 8,968 cases and 7,598 controls; UK Biobank, 2,639 PD cases and 14,301 controls; Accelerating Medicines Partnership–Parkinson's Disease Initiative, 2,248 cases and 2,817 controls). A genome-wide association study meta-analysis was performed on these individuals to understand genetic variation associated with resistance to disease. We further constructed a polygenic resilience score, and performed multimarker analysis of genomic annotation (MAGMA) gene-based analyses and functional enrichment analyses. Results: A higher polygenic resilience score was associated with a lower risk for PD (β = −0.054, standard error [SE] = 0.022, p = 0.013). Although no single locus reached genome-wide significance, MAGMA gene-based analyses nominated TBCA as a putative gene. Furthermore, we estimated the narrow-sense heritability associated with resilience to PD (h2 = 0.081, SE = 0.035, p = 0.0003). Subsequent functional enrichment analysis highlighted histone methylation as a potential pathway harboring resilience alleles that could mitigate the effects of PD risk loci. Interpretation: The present study represents a novel and comprehensive assessment of heritable genetic variation contributing to PD resistance. We show that a genetic resilience score can modify the penetrance of PD genetic risk factors and therefore protect individuals carrying a high-risk genetic burden from developing PD. ANN NEUROL 202

    Rare variants analysis of cutaneous malignant melanoma genes in Parkinson's disease

    Get PDF
    A shared genetic susceptibility between cutaneous malignant melanoma (CMM) and Parkinson's disease (PD) has been suggested. We investigated this by assessing the contribution of rare variants in genes involved in CMM to PD risk. We studied rare variation across 29 CMM risk genes using high-quality genotype data in 6875 PD cases and 6065 controls and sought to replicate findings using whole-exome sequencing data from a second independent cohort totaling 1255 PD cases and 473 controls. No statistically significant enrichment of rare variants across all genes, per gene, or for any individual variant was detected in either cohort. There were nonsignificant trends toward different carrier frequencies between PD cases and controls, under different inheritance models, in the following CMM risk genes: BAP1, DCC, ERBB4, KIT, MAPK2, MITF, PTEN, and TP53. The very rare TYR p.V275F variant, which is a pathogenic allele for recessive albinism, was more common in PD cases than controls in 3 independent cohorts. Tyrosinase, encoded by TYR, is the rate-limiting enzyme for the production of neuromelanin, and has a role in the production of dopamine. These results suggest a possible role for another gene in the dopamine-biosynthetic pathway in susceptibility to neurodegenerative Parkinsonism, but further studies in larger PD cohorts are needed to accurately determine the role of these genes/variants in disease pathogenesis

    Polygenic risk of Parkinson disease is correlated with disease age at onset

    Get PDF
    OBJECTIVE: We have investigated the polygenic architecture of Parkinson disease (PD) and have also explored the potential relationship between an individual's polygenic risk score and their disease age at onset. METHODS: This study used genotypic data from 4,294 cases and 10,340 controls obtained from the meta-analysis of PD genome-wide association studies. Polygenic score analysis was performed as previously described by the International Schizophrenia Consortium, testing whether the polygenic score alleles identified in 1 association study were significantly enriched in the cases relative to the controls of 3 independent studies. Linear regression was used to investigate the relationship between an individual's polygenic score for PD risk alleles and disease age at onset. RESULTS: Our polygenic score analysis has identified significant evidence for a polygenic component enriched in the cases of each of 3 independent PD genome-wide association cohorts (minimum p = 3.76 × 10(-6) ). Further analysis identified compelling evidence that the average polygenic score in patients with an early disease age at onset was significantly higher than in those with a late age at onset (p = 0.00014). INTERPRETATION: This provides strong support for a large polygenic contribution to the overall heritable risk of PD and also suggests that early onset forms of the illness are not exclusively caused by highly penetrant Mendelian mutations, but can also be contributed to by an accumulation of common polygenic alleles with relatively low effect sizes

    Establishing the role of rare coding variants in known Parkinson's disease risk loci

    Get PDF
    Many common genetic factors have been identified to contribute to Parkinson's disease (PD) susceptibility, improving our understanding of the related underlying biological mechanisms. The involvement of rarer variants in these loci has been poorly studied. Using International Parkinson's Disease Genomics Consortium data sets, we performed a comprehensive study to determine the impact of rare variants in 23 previously published genome-wide association studies (GWAS) loci in PD. We applied Prix fixe to select the putative causal genes underneath the GWAS peaks, which was based on underlying functional similarities. The Sequence Kernel Association Test was used to analyze the joint effect of rare, common, or both types of variants on PD susceptibility. All genes were tested simultaneously as a gene set and each gene individually. We observed a moderate association of common variants, confirming the involvement of the known PD risk loci within our genetic data sets. Focusing on rare variants, we identified additional association signals for LRRK2, STBD1, and SPATA19. Our study suggests an involvement of rare variants within several putatively causal genes underneath previously identified PD GWAS peaks

    Genetic architecture of sporadic frontotemporal dementia and overlap with Alzheimer's and Parkinson's diseases.

    Get PDF
    BACKGROUND: Clinical, pathological and genetic overlap between sporadic frontotemporal dementia (FTD), Alzheimer's disease (AD) and Parkinson's disease (PD) has been suggested; however, the relationship between these disorders is still not well understood. Here we evaluated genetic overlap between FTD, AD and PD to assess shared pathobiology and identify novel genetic variants associated with increased risk for FTD. METHODS: Summary statistics were obtained from the International FTD Genomics Consortium, International PD Genetics Consortium and International Genomics of AD Project (n>75 000 cases and controls). We used conjunction false discovery rate (FDR) to evaluate genetic pleiotropy and conditional FDR to identify novel FTD-associated SNPs. Relevant variants were further evaluated for expression quantitative loci. RESULTS: We observed SNPs within the HLA, MAPT and APOE regions jointly contributing to increased risk for FTD and AD or PD. By conditioning on polymorphisms associated with PD and AD, we found 11 loci associated with increased risk for FTD. Meta-analysis across two independent FTD cohorts revealed a genome-wide signal within the APOE region (rs6857, 3'-UTR=PVRL2, p=2.21×10-12), and a suggestive signal for rs1358071 within the MAPT region (intronic=CRHR1, p=4.91×10-7) with the effect allele tagging the H1 haplotype. Pleiotropic SNPs at the HLA and MAPT loci associated with expression changes in cis-genes supporting involvement of intracellular vesicular trafficking, immune response and endo/lysosomal processes. CONCLUSIONS: Our findings demonstrate genetic pleiotropy in these neurodegenerative diseases and indicate that sporadic FTD is a polygenic disorder where multiple pleiotropic loci with small effects contribute to increased disease risk

    A meta-analysis of genome-wide association studies identifies 17 new Parkinson's disease risk loci

    Get PDF
    Common variant genome-wide association studies (GWASs) have, to date, identified >24 risk loci for Parkinson's disease (PD). To discover additional loci, we carried out a GWAS comparing 6,476 PD cases with 302,042 controls, followed by a meta-analysis with a recent study of over 13,000 PD cases and 95,000 controls at 9,830 overlapping variants. We then tested 35 loci (P < 1 × 10−6) in a replication cohort of 5,851 cases and 5,866 controls. We identified 17 novel risk loci (P < 5 × 10−8) in a joint analysis of 26,035 cases and 403,190 controls. We used a neurocentric strategy to assign candidate risk genes to the loci. We identified protein-altering or cis–expression quantitative trait locus (cis-eQTL) variants in linkage disequilibrium with the index variant in 29 of the 41 PD loci. These results indicate a key role for autophagy and lysosomal biology in PD risk, and suggest potential new drug targets for PD
    • …
    corecore