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Polygenic Risk of Parkinson Disease Is
Correlated with Disease Age at Onset
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Objective: We have investigated the polygenic architecture of Parkinson disease (PD) and have also explored the
potential relationship between an individual’s polygenic risk score and their disease age at onset.
Methods: This study used genotypic data from 4,294 cases and 10,340 controls obtained from the meta-analysis of
PD genome-wide association studies. Polygenic score analysis was performed as previously described by the Interna-
tional Schizophrenia Consortium, testing whether the polygenic score alleles identified in 1 association study were
significantly enriched in the cases relative to the controls of 3 independent studies. Linear regression was used to
investigate the relationship between an individual’s polygenic score for PD risk alleles and disease age at onset.
Results: Our polygenic score analysis has identified significant evidence for a polygenic component enriched in the
cases of each of 3 independent PD genome-wide association cohorts (minimum p 5 3.76 3 1026). Further analysis
identified compelling evidence that the average polygenic score in patients with an early disease age at onset was
significantly higher than in those with a late age at onset (p 5 0.00014).
Interpretation: This provides strong support for a large polygenic contribution to the overall heritable risk of PD and
also suggests that early onset forms of the illness are not exclusively caused by highly penetrant Mendelian muta-
tions, but can also be contributed to by an accumulation of common polygenic alleles with relatively low effect sizes.
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The identification of rare highly penetrant mutations

in genes causing familial and early onset Parkinson

disease (PD)1–5 has considerably improved our under-

standing of disease pathogenesis. Recently, our under-

standing of idiopathic PD has been enhanced by

genome-wide association (GWA) studies6–16 that have

collectively identified PD risk variants at >18 loci.6,7

Despite their high levels of significance, these 18 loci are

thought to account for only a very small amount (3–5%)

of the expected heritability of PD.17 GWA study data

sets can be used to determine a polygenic contribution of

common single nucleotide polymorphisms (SNPs) that

show disease association but fail to meet the significance

threshold for genome-wide significance (p> 5 3 1028)
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to PD. Recent studies confirm that when weak effect loci

are also considered17 there is a substantial increase in the

estimated heritability detected in PD GWA studies

(24%), and this strongly implies that a large proportion

of genetic signal must lie below the genome-wide signifi-

cance thresholds set in the primary analyses.

Polygenic score analysis tests whether the alleles of

small effect that GWA studies are underpowered to

detect confer an aggregate risk and whether the same sets

of risk alleles are shared between cohorts/data sets.18 We

have investigated the polygenic contribution to PD by

assessing whether score alleles identified in a GWA study

from the United Kingdom are significantly enriched in

cases from 3 independent GWA studies.

The age at onset (AAO) of PD has a relatively high

heritability19 and has been previously shown to be associ-

ated with a small number of common variants,14,20 some

of which are strongly associated with disease.14 Using

polygenic score analysis, we have considered PD accord-

ing to a liability threshold model. Conceptually, liability

is a quantitative measure that represents all risk factors

that determine whether an individual will develop a dis-

ease. The liability threshold model assumes that individu-

als with a total liability greater than or equal to a fixed

threshold will develop the disease. Mendelian forms of

PD are caused by rare highly penetrant mutations at a

single disease locus and are also typically associated with

a young AAO. In line with a liability threshold model, a

rare highly penetrant mutation is likely to contribute to

a large proportion of an individual’s disease liability. We

propose that if an individual’s common risk allele poly-

genic score is related to their disease liability we might

expect patients carrying the highest load of common risk

alleles to develop PD at the youngest ages. Conversely, if

a large proportion of these cases are monogenic in

nature, one might expect an attenuation of any relation-

ship between polygenic score and AAO in the very

young, supporting the notion that early onset PD has a

substantial monogenic component.21–23

Our study provides compelling evidence for a poly-

genic contribution to PD, and that an individual’s poly-

genic score is correlated with age at disease onset.

Importantly, this indicates that a liability threshold model

is relevant to PD pathogenesis and that early onset forms

of the illness are not limited to Mendelian subtypes.

Subjects and Methods

PD GWA Data Set
This study used data obtained from the meta-analysis of 5 PD

GWA studies (5,333 PD cases and 12,298 controls) of which

259,577 SNPs passed study-specific quality controls in all stud-

ies.6 The summary statistics for each marker in the PD data set

were obtained using fixed effect inverse variance weighted meta-

analyses with METAL software (http://www.sph.umich.edu/csg/

abecasis/metal/). The AAO and individual genotypes were avail-

able for a total of 4,111 PD cases. For these patients, AAO was

systematically determined at the time of inclusion by a retro-

spective interview and is defined as the age at which PD was

first diagnosed.

Polygenic Score Analysis
We followed the approach previously described by the Interna-

tional Schizophrenia Consortium.18 Essentially this involved the

selection of a set of SNPs that were in relative linkage equilib-

rium (r2< 0.25) and the generation of additive polygenic risk

scores using SNPs with increasingly liberal probability values in

a GWA study discovery data set, which were then tested for

enrichment within an independent test sample.

In this study, we first investigated whether the polygenic

score that was based on the PD GWA results of 1 data set were

significantly enriched in the cases relative to the controls of

another independent PD GWA study. For this analysis, we used

4 natural subsets of the International Parkinson’s Disease

Genomics Consortium (IPDGC) data where the individual

genotypes of both cases (n 5 4,294) and controls (n 5 10,340)

were available. After random pruning for linkage disequilibrium

(LD; r2< 0.25), there were 59,770 SNPs available for polygenic

score analyses. We used our most powerful PD case/control

subset as our discovery sample (UK GWA study; 1,705 PD

cases/6,200 controls) to select SNPs associated with PD, for

each identifying its probability value for tests of allelic associa-

tion, the effect size, and the allele that was present in the PD

group more frequently than in the controls. We termed these

the "score" alleles and further categorized them according to

whether they met a predetermined significance threshold of

association (p< 0.01, 0.05, 0.1, up to 0.5). We next used

PLINK v1.07 to calculate the polygenic score for each individ-

ual in each of 3 independent case/control cohorts (USA-1, 876

cases/859 controls; USA-2, 971 cases/937 controls; Germany-1;

742 cases/667 controls) as the average number of score alleles

they possessed, each weighted by their effect size (B-coefficient)

log of odds ratio (OR) from the PD discovery sample. Logistic

regression was then used to test whether the polygenic score

distinguished case/control status in the 3 independent studies

(USA-1, USA-2, and Germany-1).

Age at Onset Analysis
To maximize the quality of the LD pruning, we considered it

worthwhile to use the largest and most powerful PD GWA

study available to us (5,333 cases and 12,298 controls). LD

pruning (using r2> 0.25, a physical distance threshold for

clumping SNPs of 250kb, and p 5 1 as the significance thresh-

old for SNPs, which allowed us to capture all SNPs, even if

their association with PD was not significant) identified a set of

104,830 independent SNPs that retained those most signifi-

cantly associated with the disease.

The LD-pruned set of SNPs were subsequently used for

polygenic score analysis in the 4,294 PD patients for whom
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genotype data were available (UK, German, USA-1, and USA-

2 GWA studies). Of these, AAO data were available in 4,111

patients (mean AAO 5 60.9 years, standard deviation 5 12.6),

for whom we identified the score alleles and calculated their

polygenic score. Polygenic scores were then adjusted for the

country of origin using linear regression, and the residuals were

then normalized by subtracting the mean and dividing by the

standard deviation.

To investigate the relationship between an individual’s poly-

genic score for PD risk alleles and disease AAO, we initially used

linear regression analyses of the entire data set. Because clinical

estimates of the AAO of PD will inevitably have limited precision

in predicting the start of an individual’s underlying biological

pathology, we also used chi-square or, where appropriate, Fisher

exact tests to compare the polygenic score between individuals

with AAO at the extremes ends of the AAO distribution.

Results

Polygenic Risk Score Analysis
In this study, we investigated whether the polygenic score

alleles identified in 1 PD GWA study were significantly

enriched in the cases relative to the controls of independ-

ent PD data sets. Polygenic score analysis revealed signifi-

cant evidence for an overall enrichment of the PD score

alleles identified in the UK GWA discovery sample14 in

the cases of each of 3 independent PD GWA cohorts

from the USA (32) and Germany (Table 1).

In accordance with the pattern seen in studies of

other complex diseases shown to have a polygenic sig-

nal,18,24–26 restricting our analysis to SNPs that met the

lowest association test probability value thresholds (pT)

in the discovery sample (pT< 1024, pT< 1023,

pT< 0.01, pT< 0.05) did not identify a systematic signif-

icant inflation in the polygenic scores of the PD cases of

the replication samples (p> 0.05). Rather, our most sig-

nificant evidence was observed when SNPs with pT� 0.5

in the UK sample were included where probability values

for a significant inflation in the polygenic scores ranged

between 4.42 3 1024 and 8.22 3 1025 (see Table 1).

For all significant associations the B-coefficients were

positive, indicating that the higher polygenic score in the

UK discovery sample corresponds to the higher score in

each of the 3 independent replication samples and pro-

vides evidence for a polygenic contribution to the devel-

opment of PD.

Polygenic Score and AAO
To investigate a potential relationship between an indi-

vidual’s polygenic score and their AAO, we initially used

linear regression of all 4,111 PD patients. This revealed

nominally significant evidence that AAO was correlated

with polygenic score but only when the analysis was

restricted to SNPs with pT< 0.01 (Table 2). Closer

inspection of the regression analyses revealed that

although falling short of nominal significance the B-

coefficients were negative at all pT cutoffs, indicating that

our data showed a consistent trend of higher polygenic

score corresponding to an earlier AAO of PD.

We recognize that imprecision in the clinical esti-

mates of the AAO of PD could adversely affect the

power of our regression analysis. We therefore next com-

pared the polygenic scores of patients whose AAO was at

the lower 5% (AAO< 40 years, n 5 248) with those at

the upper 5% (AAO� 80 years, n 5 196) of the AAO

distribution. This revealed that patients with an

TABLE 1. Results of Polygenic Score Analysis of PD Score Alleles in 3 Independent PD Target Samples

Selection Threshold
of Score SNPs in UK
Discovery Sample

No. of Significant
SNPs at pT in UK
Discovery Sample

p for Polygenic Score Association
in Each Target Sample

Germany-1 USA-1 USA-2

pT< 0.0001 9 0.822 0.039 0.117

pT< 0.001 64 0.711 0.782 0.014

pT< 0.01 655 0.992 0.064 0.156

pT< 0.05 3,167 0.976 0.067 0.004

pT< 0.1 6,265 0.160 0.009 0.003

pT< 0.2 12,256 2.56 3 1023 1.9 3 1023 4.1 3 1025

pT< 0.3 18,281 2.52 3 1024 3.44 3 1024 2.65 3 1025

pT< 0.4 24,169 2.17 3 1024 1.94 3 1024 3.76 3 1026

pT< 0.5 30,157 8.22 3 1025 4.42 3 1024 1.83 3 1025

PD 5 Parkinson disease; pT 5significance level probability value thresholds for SNP selection in the discovery sample; SNP 5 sin-
gle nucleotide polymorphism.
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AAO< 40 years had a significantly higher polygenic

score (mean 5 0.14, standard error [SE] 5 0.076) than

those with an AAO� 80 years (mean 5 20.05,

SE 5 0.059). Looking at the numbers of patients with

higher polygenic score categorized by early versus late

onset, we consistently observed this pattern (OR> 1) at

all pT values and for all polygenic scores cutoffs> 0 (Fig

1). Our most significant result was when we compared

patients with polygenic scores> 1.5 (pT 5 0.2,

p 5 0.00014), which revealed that 33 (13%) of patients

with a polygenic score> 1.5 had an AAO< 40 years,

whereas only 6 (3%) had an AAO� 80 years (OR 5 4.8,

relative risk [RR] 5 4.3). Moreover, our data also

revealed a consistent relationship between disease AAO

and polygenic score at all pT thresholds.

Relaxing our AAO threshold by 65 years at either

end of the AAO distribution demonstrated that although

we consistently observed the same pattern at all thresholds

of AAO, our strongest effects were seen when comparing

the patients at the most extreme ends of the AAO distribu-

tion (Fig 2). It has previously been reported that the

genetic structure in a population can be correlated with

age.27 We investigated the possibility of this adversely

affecting our results by performing an analogous analysis

that compared the distribution of the PD score alleles

between the oldest and youngest 5% (corresponding to

<50 years and >87 years, respectively) of an independent

cohort of Alzheimer disease (AD) patients (3,177 AD cases

and 7,277 controls).28 This failed to identify a significant

difference in the distribution of the PD score alleles

between the 2 age groups (minimum p 5 0.49, data not

presented). We therefore conclude that the most likely

explanation for our results being strongest when compar-

ing PD patients at the most extreme ends of the AAO

TABLE 2. Linear Regression Analysis for Association of the Polygenic Score with Age at Onset

pT No. of Significant
SNPs at pT

Effect
(B-coefficient)

p R2

1.00E-04 90 20.48 0.0135 0.0015

0.001 528 20.50 0.0103 0.0016

0.01 3,252 20.43 0.0304 0.0011

0.05 11,757 20.31 0.1172 0.0006

0.1 20,691 20.32 0.1072 0.0006

0.2 35,655 20.32 0.1003 0.0007

0.3 48,448 20.31 0.1163 0.0006

0.4 59,852 20.34 0.0830 0.0007

0.5 69,666 20.33 0.0917 0.0007

pT 5significance level probability value thresholds for SNP selection; SNP 5 single nucleotide polymorphism.

FIGURE 1: Assessment of the level that polygenic scores > 0 are enriched in Parkinson disease patients with age at onset
(AAO) < 40 years compared to AAO > 80 years. *p < 0.05, **p < 0.01, ***p < 0.001. OR 5 odds ratio; SD 5 standard deviation;
SNP 5 single nucleotide polymorphism.
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distribution is a reduction in power due to the inherent

imprecision of relating age at diagnosis to a biological

AAO and also that our selection of PD score alleles inevita-

bly captures a proportion of SNPs that are not causal.

Because the 104,830 independent SNPs that we used

to identify PD score alleles included those most signifi-

cantly associated with the disease, it is plausible that our

results are being artificially biased by SNPs whose evidence

for association is due to or merely a consequence of LD

with the very strong association signal of known GWA

study hits. To investigate this possibility, we repeated our

analysis using identical analysis thresholds but this time

excluding all 1,729 SNPs that after LD pruning were pres-

ent at the 18 genomic regions previously reported to be

strongly associated with PD, including the human leuko-

cyte antigen locus.6 Given that each of these regions is

likely to span at least 1 true PD susceptibility allele that

would now be excluded from our polygenic score analysis,

this approach is highly conservative. Nevertheless, this

analysis again revealed significant evidence that individuals

with higher polygenic scores had on average a lower AAO

of PD, with our most significant result indicating the same

magnitude of RR and OR between polygenic score and

AAO (Fig 3). Moreover, we also obtained analogous results

when we used an alternative method of LD pruning that

ignored the strength to which SNPs were associated with

PD and also excluded SNPs from the 18 associated regions

(data not presented). These analyses suggest that our find-

ings are not dependent on either the previously identified

susceptibility loci or the SNPs that are falsely associated

with PD merely as a consequence of LD with the very

strong association signals.

Discussion

The molecular genetic data reported in this study provides

strong support for a large polygenic contribution to the

overall heritable risk of PD. This implies that the genetic

architecture of PD includes many common variants of

small effect and is likely to be reflected in a large number

of susceptibility genes and a complex set of biological path-

ways relevant to the disease. The PD score alleles identified

in this cohort are not significantly enriched (minimum

p 5 0.14) in an independent GWA study for AD,29 indi-

cating that the polygenic component to PD that we have

FIGURE 2: Assessment of the level that polygenic scores > 1.5 are enriched in different thresholds of early versus late onset
Parkinson disease patients. *p < 0.05, **p < 0.01, ***p < 0.001. OR 5 odds ratio; SNP 5 single nucleotide polymorphism.

FIGURE 3: Assessment of the level that polygenic scores > 1.5 are enriched in different thresholds of early versus late onset
Parkinson disease (PD) patients when 18 regions reported to be associated with PD are excluded. *p < 0.05, **p < 0.01,
***p < 0.001. OR 5 odds ratio; SNP 5 single nucleotide polymorphism.
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identified is disease specific. Moreover, to conduct our

analysis we had to define a training GWA study and a

series of replication data sets. We achieved this by splitting

the IPDGC meta-analysis by its original GWA studies and

observed a similar pattern of results when we defined the

PD score alleles in a sample from the United Kingdom

and tested for enrichment in samples from Germany and

the USA (and vice versa). It is therefore unlikely that our

observations are an artifact of subtle population substruc-

ture present in 1 of our sample cohorts.

We have also investigated the potential relationship

between AAO and polygenic score. To do this we

hypothesized that if a person’s polygenic score represents

a measure of their overall load of PD risk alleles then, in

accordance with a liability threshold model, an individu-

al’s disease liability should be related to their polygenic

score. For established PD risk factors, it is recognized

that rare highly penetrant Mendelian variants (eg, homo-

zygous PARK2 mutations) typically lead to a reduced

AAO when compared to less penetrant disease mutations

(eg, G2019S at LRRK2). As Mendelian mutations are

expected to represent a substantial proportion of a car-

rier’s disease liability, we predicted that PD patients who

do not carry highly penetrant Mendelian risk mutations

but manifest the disease at a younger age would on aver-

age carry the highest polygenic load of common PD sus-

ceptibility alleles. Our study has identified compelling

evidence that supports this hypothesis; patients with an

early AAO consistently had a significantly higher poly-

genic score when compared to those with a late AAO.

This indicates that early onset forms of PD are not lim-

ited to Mendelian genetic subtypes but can also be con-

tributed to by an accumulation of common polygenic

alleles. Moreover, as our study did not include a prescre-

ening to identify highly penetrant mutations, it is possi-

ble that a small number of carriers remain in this cohort;

our analysis can therefore be considered conservative.

As might be expected, we observed our strongest

enrichment when we compared patients with an AAO at

the lower and upper 5% of our sample distribution

(OR 5 4.8, RR 5 4.3), which suggested that a PD patient

with a polygenic score> 1.5 is �4 times more likely to

develop the disease before the age of 40 years than after 80

years of age. Importantly, by adjusting the polygenic scores

for the country of origin, we minimized any possible

adverse effects of population stratification. Excluding all

SNPs spanning genomic regions that harbor known PD

susceptibility loci did not adversely affect our findings,

implying that the main contribution of the PD polygenic

signal identified in this study is from common SNPs that

show disease association but fail to meet the probability

value threshold for genome-wide significance.

Further studies are required if we are to progress

from evidence for a polygenic contribution to PD to

understanding the specific genetic factors that comprise

the polygenic component. Increasing the discovery sam-

ple size will allow more loci with increasingly small indi-

vidual effect sizes to pass the threshold of genome-wide

significance, and should substantially refine the polygenic

scores derived here. Moreover, as we have previously

shown, using approaches such as gene pathway analyses

it is possible to utilize the polygenic signal captured and

identify genes or biological systems relevant to PD.30

It is possible that our findings are being influenced by

rare PD susceptibility variants that are in LD with the com-

mon alleles analyzed in this study. The ongoing efforts of

studies performing exome and whole genome sequencing in

large numbers of PD case/control cohorts will allow us to

establish the haplotype structure of common and rare alleles,

and will allow us to understand which loci are subject to

"synthetic association."31 Moreover, as previously demon-

strated in other complex diseases,32 future polygenic score

analysis of variants identified by exome/genome sequencing is

expected to further inform our understanding of the genetic

underpinnings of PD. Although it is an important measure,

we recognize that clinical estimates of the AAO of PD can

often actually reflect the age at diagnosis and as such will

inevitably have limited precision in predicting the start of an

individual’s underlying biological pathology. Applying poly-

genic score analyses to the results of large sequencing studies

of clinically well-characterized cohorts will help overcome the

inherent imprecision of measuring AAO and applying poly-

genic score analysis to PD score alleles that inevitably include

a proportion of SNPs that are not causal.

Finally, we have used the term PD score allele, as this

approach cannot differentiate the minority of true PD risk

alleles from variants not associated with the disease. As

such, the derived polygenic scores have little value for pre-

dicting an individual’s risk of developing PD. However,

measures of polygenic burden could prove useful in distin-

guishing PD patients whose disease liability is most likely to

carry the largest or smallest genetic component. Identifying

these individuals would benefit genetic recall studies and

could facilitate a better understanding of how gene–gene

and gene–environment interactions increase risk to PD.
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L�evêque, Pessac, France), Daniah Trabzuni (Department

of Molecular Neuroscience, UCL Institute of Neurol-

ogy), Bryan J Traynor (Laboratory of Neurogenetics,

National Institute on Aging), Andr�e G Uitterlinden

(Departments of Epidemiology and Internal Medicine,

Erasmus University Medical Center), Daan Velseboer

(Department of Neurology, Academic Medical Center),

Marie Vidailhet (INSERM, UMR_S975, Universit�e

Pierre et Marie Curie-Paris, CNRS, UMR 7225), Robert

Walker (Department of Pathology, University of Edin-

burgh), Bart van de Warrenburg (Department of Neu-

rology, Radboud University Nijmegen Medical Centre),

Mirdhu Wickremaratchi (Department of Neurology,

Cardiff University, Cardiff, UK), Nigel Williams (MRC

Centre for Neuropsychiatric Genetics and Genomics),

Caroline H Williams-Gray (Department of Neurology,

Addenbrooke’s Hospital), Sophie Winder-Rhodes

(Department of Psychiatry and Medical Research Coun-

cil and Wellcome Trust Behavioural and Clinical Neuro-

sciences Institute, University of Cambridge), K�ari

Stef�ansson (deCODE genetics), Maria Martinez

(INSERM UMR 1043; and Paul Sabatier University),

Nicholas W Wood (UCL Genetics Institute; and Depart-

ment of Molecular Neuroscience, UCL Institute of Neu-

rology), John Hardy (Department of Molecular

Neuroscience, UCL Institute of Neurology), Peter Heu-

tink (Department of Clinical Genetics, Section of Medi-

cal Genomics, VU University Medical Centre), Alexis

Brice (INSERM, UMR_S975, Universit�e Pierre et Marie

Curie-Paris, CNRS, UMR 7225, AP-HP, Piti�e-Salpêtrière
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