25 research outputs found

    The PAU Survey and Euclid: Improving broadband photometric redshifts with multi-task learning

    Full text link
    Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, los autores pertenecientes a la UAM y el nombre del grupo de colaboración, si lo hubiereCurrent and future imaging surveys require photometric redshifts (photo-zs) to be estimated for millions of galaxies. Improving the photo-z quality is a major challenge but is needed to advance our understanding of cosmology. In this paper we explore how the synergies between narrow-band photometric data and large imaging surveys can be exploited to improve broadband photometric redshifts. We used a multi-task learning (MTL) network to improve broadband photo-z estimates by simultaneously predicting the broadband photo-z and the narrow-band photometry from the broadband photometry. The narrow-band photometry is only required in the training field, which also enables better photo-z predictions for the galaxies without narrow-band photometry in the wide field. This technique was tested with data from the Physics of the Accelerating Universe Survey (PAUS) in the COSMOS field. We find that the method predicts photo-zs that are 13% more precise down to magnitude iAB 1. Applying this technique to deeper samples is crucial for future surveys such as Euclid or LSST. For simulated data, training on a sample with iAB < 23, the method reduces the photo-z scatter by 16% for all galaxies with iAB < 25. We also studied the effects of extending the training sample with photometric galaxies using PAUS high-precision photo-zs, which reduces the photo-z scatter by 20% in the COSMOS fieldThe PAU Survey is partially supported by MINECO under grants CSD2007-00060, AYA2015-71825, ESP2017-89838, PGC2018-094773, PGC2018-102021, SEV-2016-0588, SEV-2016-0597, MDM-2015-0509, PID2019-111317GB-C31 and Juan de la Cierva fellowship and LACEGAL and EWC Marie Sklodowska-Curie grant No 734374 and no.776247 with ERDF funds from the EU Horizon 2020 Programme, some of which include ERDF funds from the European Union. IEEC and IFAE are partially funded by the CERCA and Beatriu de Pinos program of the Generalitat de Catalunya. Funding for PAUS has also been provided by Durham University (via the ERC StG DEGAS-259586), ETH Zurich, Leiden University (via ERC StG ADULT279396 and Netherlands Organisation for Scientific Research (NWO) Vici grant 639.043.512), Bochum University (via a Heisenberg grant of the Deutsche Forschungsgemeinschaft (Hi 1495/5-1) as well as an ERC Consolidator Grant (No. 770935)), University College London, Portsmouth support through the Royal Society Wolfson fellowship and from the European Union’s Horizon 2020 research and innovation programme under the grant agreement No 776247 EWC. The results published were also funded by the Polish National Agency for Academic Exchange (Bekker grant BPN/BEK/2021/1/00298/DEC/1), the European Union’s Horizon 2020 research and innovation programme under the Maria Skłodowska-Curie (grant agreement No 754510) and by the Spanish Ministry of Science and Innovation through Juan de la Cierva-formacion program (reference FJC2018-038792-I

    Euclid : Forecasts from redshift-space distortions and the Alcock-Paczynski test with cosmic voids

    Get PDF
    Euclid is poised to survey galaxies across a cosmological volume of unprecedented size, providing observations of more than a billion objects distributed over a third of the full sky. Approximately 20 million of these galaxies will have their spectroscopy available, allowing us to map the three-dimensional large-scale structure of the Universe in great detail. This paper investigates prospects for the detection of cosmic voids therein and the unique benefit they provide for cosmological studies. In particular, we study the imprints of dynamic (redshift-space) and geometric (Alcock-Paczynski) distortions of average void shapes and their constraining power on the growth of structure and cosmological distance ratios. To this end, we made use of the Flagship mock catalog, a state-of-the-art simulation of the data expected to be observed with Euclid. We arranged the data into four adjacent redshift bins, each of which contains about 11000 voids and we estimated the stacked void-galaxy cross-correlation function in every bin. Fitting a linear-theory model to the data, we obtained constraints on f/b and DMH, where f is the linear growth rate of density fluctuations, b the galaxy bias, D-M the comoving angular diameter distance, and H the Hubble rate. In addition, we marginalized over two nuisance parameters included in our model to account for unknown systematic effects in the analysis. With this approach, Euclid will be able to reach a relative precision of about 4% on measurements of f/b and 0.5% on DMH in each redshift bin. Better modeling or calibration of the nuisance parameters may further increase this precision to 1% and 0.4%, respectively. Our results show that the exploitation of cosmic voids in Euclid will provide competitive constraints on cosmology even as a stand-alone probe. For example, the equation-of-state parameter, w, for dark energy will be measured with a precision of about 10%, consistent with previous more approximate forecasts.Peer reviewe

    Euclid : Forecast constraints on consistency tests of the Lambda CDM model

    Get PDF
    Context. The standard cosmological model is based on the fundamental assumptions of a spatially homogeneous and isotropic universe on large scales. An observational detection of a violation of these assumptions at any redshift would immediately indicate the presence of new physics. Aims. We quantify the ability of the Euclid mission, together with contemporary surveys, to improve the current sensitivity of null tests of the canonical cosmological constant Lambda and the cold dark matter (Lambda CDM) model in the redshift range 0 < z < 1.8. Methods. We considered both currently available data and simulated Euclid and external data products based on a Lambda CDM fiducial model, an evolving dark energy model assuming the Chevallier-Polarski-Linder parameterization or an inhomogeneous Lemaitre-Tolman-Bondi model with a cosmological constant Lambda, and carried out two separate but complementary analyses: a machine learning reconstruction of the null tests based on genetic algorithms, and a theory-agnostic parametric approach based on Taylor expansion and binning of the data, in order to avoid assumptions about any particular model. Results. We find that in combination with external probes, Euclid can improve current constraints on null tests of the Lambda CDM by approximately a factor of three when using the machine learning approach and by a further factor of two in the case of the parametric approach. However, we also find that in certain cases, the parametric approach may be biased against or missing some features of models far from Lambda CDM Conclusions. Our analysis highlights the importance of synergies between Euclid and other surveys. These synergies are crucial for providing tighter constraints over an extended redshift range for a plethora of different consistency tests of some of the main assumptions of the current cosmological paradigm.Peer reviewe

    Euclid : Estimation of the Impact of Correlated Readout Noise for Flux Measurements with the Euclid NISP Instrument

    Get PDF
    The Euclid satellite, to be launched by ESA in 2022, will be a major instrument for cosmology for the next decades. Euclid is composed of two instruments: the Visible instrument and the Near Infrared Spectrometer and Photometer (NISP). In this work, we estimate the implications of correlated readout noise in the NISP detectors for the final in-flight flux measurements. Considering the multiple accumulated readout mode, for which the UTR (Up The Ramp) exposure frames are averaged in groups, we derive an analytical expression for the noise covariance matrix between groups in the presence of correlated noise. We also characterize the correlated readout noise properties in the NISP engineering-grade detectors using long dark integrations. For this purpose, we assume a (1/f) (alpha)-like noise model and fit the model parameters to the data, obtaining typical values of sigma = 19.7(-0.8)(+1.1)e(-)Hz(-0.5), f(knee) = (5.2(-1.3)(+1.8) x 10(-3) Hz and alpha = 1.24(-0.21)(+0.26). Furthermore, via realistic simulations and using a maximum likelihood flux estimator we derive the bias between the input flux and the recovered one. We find that using our analytical expression for the covariance matrix of the correlated readout noise we diminish this bias by up to a factor of four with respect to the white noise approximation for the covariance matrix. Finally, we conclude that the final bias on the in-flight NISP flux measurements should still be negligible even in the white readout noise approximation, which is taken as a baseline for the Euclid on-board processing to estimate the on-sky flux.Peer reviewe

    KiDS and Euclid : Cosmological implications of a pseudo angular power spectrum analysis of KiDS-1000 cosmic shear tomography

    Get PDF
    We present a tomographic weak lensing analysis of the Kilo Degree Survey Data Release 4 (KiDS-1000), using a new pseudo angular power spectrum estimator (pseudo-C-l) under development for the ESA Euclid mission. Over 21 million galaxies with shape information are divided into five tomographic redshift bins, ranging from 0.1 to 1.2 in photometric redshift. We measured pseudo-C-l using eight bands in the multipole range 76 < l < 1500 for auto- and cross-power spectra between the tomographic bins. A series of tests were carried out to check for systematic contamination from a variety of observational sources including stellar number density, variations in survey depth, and point spread function properties. While some marginal correlations with these systematic tracers were observed, there is no evidence of bias in the cosmological inference. B-mode power spectra are consistent with zero signal, with no significant residual contamination from E/B-mode leakage. We performed a Bayesian analysis of the pseudo-C-l estimates by forward modelling the effects of the mask. Assuming a spatially flat ACDM cosmology, we constrained the structure growth parameter S-8 = sigma(8)(Omega(m)/0.3)(1/2) = 0.754(-0.029)(+0.027). When combining cosmic shear from KiDS-1000 with baryon acoustic oscillation and redshift space distortion data from recent Sloan Digital Sky Survey (SDSS) measurements of luminous red galaxies, as well as the Lyman-alpha forest and its cross-correlation with quasars, we tightened these constraints to S-8 = 0.771(-0.032)(+0.006). These results are in very good agreement with previous KiDS-1000 and SDSS analyses and confirm a similar to 3 sigma tension with early-Universe constraints from cosmic microwave background experiments.Peer reviewe

    Calculation, comparison to simulations, and dependence on survey geometry

    Get PDF
    An accurate covariance matrix is essential for obtaining reliable cosmological results when using a Gaussian likelihood. In this paper we study the covariance of pseudo-C-l estimates of tomographic cosmic shear power spectra. Using two existing publicly available codes in combination, we calculate the full covariance matrix, including mode-coupling contributions arising from both partial sky coverage and non-linear structure growth. For three different sky masks, we compare the theoretical covariance matrix to that estimated from publicly available N-body weak lensing simulations, finding good agreement. We find that as a more extreme sky cut is applied, a corresponding increase in both Gaussian off-diagonal covariance and non-Gaussian super-sample covariance is observed in both theory and simulations, in accordance with expectations. Studying the different contributions to the covariance in detail, we find that the Gaussian covariance dominates along the main diagonal and the closest off-diagonals, but farther away from the main diagonal the super-sample covariance is dominant. Forming mock constraints in parameters that describe matter clustering and dark energy, we find that neglecting non-Gaussian contributions to the covariance can lead to underestimating the true size of confidence regions by up to 70 per cent. The dominant non-Gaussian covariance component is the super-sample covariance, but neglecting the smaller connected non-Gaussian covariance can still lead to the underestimation of uncertainties by 10-20 per cent. A real cosmological analysis will require marginalisation over many nuisance parameters, which will decrease the relative importance of all cosmological contributions to the covariance, so these values should be taken as upper limits on the importance of each component.Peer reviewe

    Euclid : Constraining ensemble photometric redshift distributions with stacked spectroscopy

    Get PDF
    Context. The ESA Euclid mission will produce photometric galaxy samples over 15 000 square degrees of the sky that will be rich for clustering and weak lensing statistics. The accuracy of the cosmological constraints derived from these measurements will depend on the knowledge of the underlying redshift distributions based on photometric redshift calibrations. Aims. A new approach is proposed to use the stacked spectra from Euclid slitless spectroscopy to augment broad-band photometric information to constrain the redshift distribution with spectral energy distribution fitting. The high spectral resolution available in the stacked spectra complements the photometry and helps to break the colour-redshift degeneracy and constrain the redshift distribution of galaxy samples. Methods. We modelled the stacked spectra as a linear mixture of spectral templates. The mixture may be inverted to infer the underlying redshift distribution using constrained regression algorithms. We demonstrate the method on simulated Vera C. Rubin Observatory and Euclid mock survey data sets based on the Euclid Flagship mock galaxy catalogue. We assess the accuracy of the reconstruction by considering the inference of the baryon acoustic scale from angular two-point correlation function measurements. Results. We selected mock photometric galaxy samples at redshift z>1 using the self-organising map algorithm. Considering the idealised case without dust attenuation, we find that the redshift distributions of these samples can be recovered with 0.5% accuracy on the baryon acoustic scale. The estimates are not significantly degraded by the spectroscopic measurement noise due to the large sample size. However, the error degrades to 2% when the dust attenuation model is left free. We find that the colour degeneracies introduced by attenuation limit the accuracy considering the wavelength coverage of Euclid near-infrared spectroscopy.Peer reviewe

    Euclid: Searching for pair-instability supernovae with the Deep Survey

    Get PDF
    Pair-instability supernovae are theorized supernovae that have not yet been observationally confirmed. They are predicted to exist in low-metallicity environments. Because overall metallicity becomes lower at higher redshifts, deep near-infrared transient surveys probing high-redshift supernovae are suitable to discover pair-instability supernovae. The Euclid satellite, which is planned launch in 2023, has a near-infrared wide-field instrument that is suitable for a high-redshift supernova survey. The Euclid Deep Survey is planned to make regular observations of three Euclid Deep Fields (40 deg(2) in total) spanning Euclid's six-year primary mission period. While the observations of the Euclid Deep Fields are not frequent, we show that the predicted long duration of pair-instability supernovae would allow us to search for high-redshift pair-instability supernovae with the Euclid Deep Survey. Based on the current observational plan of the Euclid mission, we conduct survey simulations in order to estimate the expected numbers of pair-instability supernova discoveries. We find that up to several hundred pair-instability supernovae at z less than or similar to 3.5 can be discovered within the Euclid Deep Survey. We also show that pair-instability supernova candidates can be efficiently identified by their duration and color, which can be determined with the current Euclid Deep Survey plan. We conclude that the Euclid mission can lead to the first confirmation of pair-instability supernovae if their event rates are as high as those predicted by recent theoretical studies. We also update the expected numbers of superluminous supernova discoveries in the Euclid Deep Survey based on the latest observational plan.Peer reviewe

    Euclid: Fast two-point correlation function covariance through linear construction

    Get PDF
    We present a method for fast evaluation of the covariance matrix for a two-point galaxy correlation function (2PCF) measured with the Landy-Szalay estimator. The standard way of evaluating the covariance matrix consists in running the estimator on a large number of mock catalogs, and evaluating their sample covariance. With large random catalog sizes (random-to-data objects' ratio M >> 1) the computational cost of the standard method is dominated by that of counting the data-random and random-random pairs, while the uncertainty of the estimate is dominated by that of data-data pairs. We present a method called Linear Construction (LC), where the covariance is estimated for small random catalogs with a size of M = 1 and M = 2, and the covariance for arbitrary M is constructed as a linear combination of the two. We show that the LC covariance estimate is unbiased. We validated the method with PINOCCHIO simulations in the range r = 20-200 h(-1) Mpc. With M = 50 and with 2h(-1) Mpc bins, the theoretical speedup of the method is a factor of 14. We discuss the impact on the precision matrix and parameter estimation, and present a formula for the covariance of covariance.Peer reviewe
    corecore