932 research outputs found
Computers, the internet, and cheating among secondary school students: Some implications for educators
This article investigates in greater depth one particular aspect of cheating within secondary education and some implications for measuring academic achievement. More specifically, it examines how secondary students exploit the Internet for plagiarizing schoolwork, and looks at how a traditional method of educational assessment, namely paper-based report and essay writing, has been impacted by the growth of Internet usage and the proliferation of computer skills among secondary school students. One of the conclusions is that students’ technology fluency is forcing educators to revisit conventional assessment methods. Different options for combating Internet plagiarism are presented, and some software tools as well as non-technology solutions are evaluated in light of the problems brought about by “cyberplagiarism.
Pair distribution function and structure factor of spherical particles
The availability of neutron spallation-source instruments that provide total
scattering powder diffraction has led to an increased application of real-space
structure analysis using the pair distribution function. Currently, the
analytical treatment of finite size effects within pair distribution refinement
procedures is limited. To that end, an envelope function is derived which
transforms the pair distribution function of an infinite solid into that of a
spherical particle with the same crystal structure. Distributions of particle
sizes are then considered, and the associated envelope function is used to
predict the particle size distribution of an experimental sample of gold
nanoparticles from its pair distribution function alone. Finally, complementing
the wealth of existing diffraction analysis, the peak broadening for the
structure factor of spherical particles, expressed as a convolution derived
from the envelope functions, is calculated exactly for all particle size
distributions considered, and peak maxima, offsets, and asymmetries are
discussed.Comment: 7 pages, 6 figure
Interrelation between the pseudogap and the incoherent quasi-particle features of high-Tc superconductors
Using a scenario of a hybridized mixture of localized bipolarons and
conduction electrons, we demonstrate for the latter the simultaneous appearance
of a pseudogap and of strong incoherent contributions to their quasi-particle
spectrum which arise from phonon shake-off effects. This can be traced back to
temporarily fluctuating local lattice deformations, giving rise to a
double-peak structure in the pair distribution function, which should be a key
feature in testing the origin of these incoherent contributions, recently seen
in angle-resolved photoemission spectroscopy (ARPES).Comment: 4 pages, 3 figures, to be published in Phys. Rev. Let
Multiconfigurational nature of 5f orbitals in uranium and plutonium intermetallics
Uranium and plutonium's 5f electrons are tenuously poised between strongly
bonding with ligand spd-states and residing close to the nucleus. The unusual
properties of these elements and their compounds (eg. the six different
allotropes of elemental plutonium) are widely believed to depend on the related
attributes of f-orbital occupancy and delocalization, for which a quantitative
measure is lacking. By employing resonant x-ray emission spectroscopy (RXES)
and x-ray absorption near-edge structure (XANES) spectroscopy and making
comparisons to specific heat measurements, we demonstrate the presence of
multiconfigurational f-orbital states in the actinide elements U and Pu, and in
a wide range of uranium and plutonium intermetallic compounds. These results
provide a robust experimental basis for a new framework for understanding the
strongly-correlated behavior of actinide materials.Comment: 30 pages, concatenated article and supporting information, 10 figure
Quantum and Thermal Phase Transitions of Halogen-Bridged Binuclear Transition-Metal Complexes
Aiming to settle the controversial observations for halogen-bridged binuclear
transition-metal (MMX) complexes, finite-temperature Hartree-Fock calculations
are performed for a relevant two-band Peierls-Hubbard model. Thermal, as well
as quantum, phase transitions are investigated with particular emphasis on the
competition between electron itinerancy, electron-phonon interaction and
electron-electron correlation. Recently observed distinct thermal behaviors of
two typical MMX compounds Pt_2(CH_3CS_2)_4I and
(NH_4)_4[Pt_2(P_2O_5H_2)_4I]2H_2O are supported and further tuning of their
electronic states is predicted.Comment: 5 pages, 3 figures embedded, to be published in J. Phys. Soc. Jpn.
Vol.70, No.5 (2001
Competing Ground States of the New Class of Halogen-Bridged Metal Complexes
Based on a symmetry argument, we study the ground-state properties of
halogen-bridged binuclear metal chain complexes. We systematically derive
commensurate density-wave solutions from a relevant two-band Peierls-Hubbard
model and numerically draw the the ground-state phase diagram as a function of
electron-electron correlations, electron-phonon interactions, and doping
concentration within the Hartree-Fock approximation. The competition between
two types of charge-density-wave states, which has recently been reported
experimentally, is indeed demonstrated.Comment: 4 pages, 5 figures embedded, to appear in J. Phys. Soc. Jp
Possible charge inhomogeneities in the CuO2 planes of YBa2Cu3O6+x (x=0.25, 0.45, 0.65, 0.94) from pulsed neutron diffraction
The atomic pair distribution functions (PDF) of four powder samples of
YBa2Cu3O6+x (x=0.25, 0.45, 0.65, 0.94) at 15 K have been measured by means of
pulsed neutron diffraction. The PDF is modelled using a full-profile fitting
approach to yield structural parameters. In contrast to earlier XAFS work we
find no evidence of a split apical oxygen site. However, a slightly improved
fit over the average crystallographic model results when the planar Cu(2) site
is split along the z-direction. This is interpreted in terms of charge
inhomogeneities in the CuO2 planes.Comment: 8 pages, 3 figure
- …
