274 research outputs found

    Effective medium theory of elastic waves in random networks of rods

    Full text link
    We formulate an effective medium (mean field) theory of a material consisting of randomly distributed nodes connected by straight slender rods, hinged at the nodes. Defining novel wavelength-dependent effective elastic moduli, we calculate both the static moduli and the dispersion relations of ultrasonic longitudinal and transverse elastic waves. At finite wave vector kk the waves are dispersive, with phase and group velocities decreasing with increasing wave vector. These results are directly applicable to networks with empty pore space. They also describe the solid matrix in two-component (Biot) theories of fluid-filled porous media. We suggest the possibility of low density materials with higher ratios of stiffness and strength to density than those of foams, aerogels or trabecular bone.Comment: 14 pp., 3 fig

    Loop Quantum Cosmology, Boundary Proposals, and Inflation

    Full text link
    Loop quantum cosmology of the closed isotropic model is studied with a special emphasis on a comparison with traditional results obtained in the Wheeler-DeWitt approach. This includes the relation of the dynamical initial conditions with boundary conditions such as the no-boundary or the tunneling proposal and a discussion of inflation from quantum cosmology.Comment: 20 pages, 6 figure

    Period-doubling bifurcation in strongly anisotropic Bianchi I quantum cosmology

    Get PDF
    We solve the Wheeler-DeWitt equation for the minisuperspace of a cosmological model of Bianchi type I with a minimally coupled massive scalar field ϕ\phi as source by generalizing the calculation of Lukash and Schmidt [1]. Contrarily to other approaches we allow strong anisotropy. Combining analytical and numerical methods, we apply an adiabatic approximation for ϕ\phi, and as new feature we find a period-doubling bifurcation. This bifurcation takes place near the cosmological quantum boundary, i.e., the boundary of the quasiclassical region with oscillating ψ\psi-function where the WKB-approximation is good. The numerical calculations suggest that such a notion of a ``cosmological quantum boundary'' is well-defined, because sharply beyond that boundary, the WKB-approximation is no more applicable at all. This result confirms the adequateness of the introduction of a cosmological quantum boundary in quantum cosmology.Comment: Latest update of the paper at http://www.physik.fu-berlin.de/~mbach/publics.html#

    Robustness in Glyoxylate Bypass Regulation

    Get PDF
    The glyoxylate bypass allows Escherichia coli to grow on carbon sources with only two carbons by bypassing the loss of carbons as CO2 in the tricarboxylic acid cycle. The flux toward this bypass is regulated by the phosphorylation of the enzyme isocitrate dehydrogenase (IDH) by a bifunctional kinase–phosphatase called IDHKP. In this system, IDH activity has been found to be remarkably robust with respect to wide variations in the total IDH protein concentration. Here, we examine possible mechanisms to explain this robustness. Explanations in which IDHKP works simultaneously as a first-order kinase and as a zero-order phosphatase with a single IDH binding site are found to be inconsistent with robustness. Instead, we suggest a robust mechanism where both substrates bind the bifunctional enzyme to form a ternary complex

    Glueballs and the superfluid phase of Two-Color QCD

    Full text link
    We present the first results on scalar glueballs in cold, dense matter using lattice simulations of two color QCD. The simulations are carried out on a 63×126^3 \times 12 lattice and use a standard hybrid molecular dynamics algorithm for staggered fermions for two values of quark mass. The glueball correlators are evaluated via a multi-step smearing procedure. The amplitude of the glueball correlator peaks in correspondence with the zero temperature chiral transition, μc=mπ/2\mu_c = m_\pi/2, and the propagators change in a significant way in the superfluid phase, while the Polyakov loop is mearly insensitive to the transition. Standard analysis suggest that lowest mass in the 0++0^{++} gluonic channel decreases in the superfluid phase, but these observations need to be confirmed on larger and more elongated lattices These results indicate that a nonzero density induces nontrivial modifications of the gluonic medium.Comment: 26 pages, 13 figures; discussions and one figure added; to appear in EPJ

    PRegnancy Outcomes after a Maternity Intervention for Stressful EmotionS (PROMISES): study protocol for a randomised controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is ample evidence from observational prospective studies that maternal depression or anxiety during pregnancy is a risk factor for adverse psychosocial outcomes in the offspring. However, to date no previous study has demonstrated that treatment of depressive or anxious symptoms in pregnancy actually could prevent psychosocial problems in children. Preventing psychosocial problems in children will eventually bring down the huge public health burden of mental disease. The main objective of this study is to assess the effects of cognitive behavioural therapy in pregnant women with symptoms of anxiety or depression on the child's development as well as behavioural and emotional problems. In addition, we aim to study its effects on the child's development, maternal mental health, and neonatal outcomes, as well as the cost-effectiveness of cognitive behavioural therapy relative to usual care.</p> <p>Methods/design</p> <p>We will include 300 women with at least moderate levels of anxiety or depression at the end of the first trimester of pregnancy. By including 300 women we will be able to demonstrate effect sizes of 0.35 or over on the total problems scale of the child behavioural checklist 1.5-5 with alpha 5% and power (1-beta) 80%.</p> <p>Women in the intervention arm are offered 10-14 individual cognitive behavioural therapy sessions, 6-10 sessions during pregnancy and 4-8 sessions after delivery (once a week). Women in the control group receive care as usual.</p> <p>Primary outcome is behavioural/emotional problems at 1.5 years of age as assessed by the total problems scale of the child behaviour checklist 1.5 - 5 years.</p> <p>Secondary outcomes will be mental, psychomotor and behavioural development of the child at age 18 months according to the Bayley scales, maternal anxiety and depression during pregnancy and postpartum, and neonatal outcomes such as birth weight, gestational age and Apgar score, health care consumption and general health status (economic evaluation).</p> <p>Trial Registration</p> <p>Netherlands Trial Register (NTR): <a href="http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=2242">NTR2242</a></p

    Loop Quantum Cosmology

    Get PDF
    Quantum gravity is expected to be necessary in order to understand situations where classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e. the fact that the backward evolution of a classical space-time inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding space-time is then modified. One particular realization is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. Main effects are introduced into effective classical equations which allow to avoid interpretational problems of quantum theory. They give rise to new kinds of early universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function which allows to extend space-time beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of space-time arising in loop quantum gravity and its application to cosmology sheds new light on more general issues such as time.Comment: 104 pages, 10 figures; online version, containing 6 movies, available at http://relativity.livingreviews.org/Articles/lrr-2005-11
    corecore