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Abstract

Quantum gravity is expected to be necessary in order to understand situations where clas-
sical general relativity breaks down. In particular in cosmology one has to deal with initial
singularities, i.e., the fact that the backward evolution of a classical space-time inevitably
comes to an end after a finite amount of proper time. This presents a breakdown of the clas-
sical picture and requires an extended theory for a meaningful description. Since small length
scales and high curvatures are involved, quantum effects must play a role. Not only the singu-
larity itself but also the surrounding space-time is then modified. One particular realization
is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems,
which removes classical singularities. Its implications can be studied at different levels. Main
effects are introduced into effective classical equations which allow to avoid interpretational
problems of quantum theory. They give rise to new kinds of early universe phenomenology
with applications to inflation and cyclic models. To resolve classical singularities and to under-
stand the structure of geometry around them, the quantum description is necessary. Classical
evolution is then replaced by a difference equation for a wave function which allows to ex-
tend space-time beyond classical singularities. One main question is how these homogeneous
scenarios are related to full loop quantum gravity, which can be dealt with at the level of dis-
tributional symmetric states. Finally, the new structure of space-time arising in loop quantum
gravity and its application to cosmology sheds new light on more general issues such as time.

(©Max Planck Society and the authors.
Further information on copyright is given at
http://relativity.livingreviews.org/About/copyright.html
For permission to reproduce the article please contact livrev@aei.mpg.de.


https://core.ac.uk/display/81922975?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://relativity.livingreviews.org/About/copyright.html

How to cite this article

Owing to the fact that a Living Reviews article can evolve over time, we recommend to cite the
article as follows:

Martin Bojowald,
“Loop Quantum Cosmology”,
Living Rev. Relativity, 8, (2005), 11. [Online Article]: cited [<date>],
http://www.livingreviews.org/lrr-2005-11

The date given as <date> then uniquely identifies the version of the article you are referring to.

Article Revisions

Living Reviews supports two different ways to keep its articles up-to-date:

Fast-track revision A fast-track revision provides the author with the opportunity to add short
notices of current research results, trends and developments, or important publications to
the article. A fast-track revision is refereed by the responsible subject editor. If an article
has undergone a fast-track revision, a summary of changes will be listed here.

Major update A major update will include substantial changes and additions and is subject to
full external refereeing. It is published with a new publication number.

For detailed documentation of an article’s evolution, please refer always to the history document
of the article’s online version at http://www.livingreviews.org/lrr-2005-11.


http://www.livingreviews.org/lrr-2005-11

Contents

1 Introduction

2 The Viewpoint of Loop Quantum Cosmology

3 Loop Quantum Gravity

3.1
3.2
3.3
3.4
3.5
3.6
3.7

Geometry . . .. e e e e e
Ashtekar variables . . . . . . . ..
Representation . . . . . . . . e
Function spaces . . . . . . . . . L e e
Composite Operators . . . . . . . . . o e e e e e
Hamiltonian constraint . . . . . . . .. ... L L L
OPEn iSSUES .« . v v v vt e e e e e e

4 Loop Cosmology

4.1
4.2
4.3
4.4
4.5
4.6

4.7
4.8
4.9

4.10
4.11
4.12
4.13
4.14
4.15

4.16

Isotropy . . o . . e e e e e
Isotropy: Connection variables . . . . .. .. ... .. L o
Isotropy: Implications of a loop quantization . . .. ... .. ... ... ......
Isotropy: Effective densities and equations . . . . . . . . . ... ... ... .....
Isotropy: Properties and intuitive meaning . . . . . . . . .. ... L.
Isotropy: Applications . . . . . . . . . . L
4.6.1 Collapsing phase . . . . . . . . . .
4.6.2 EXpansion . . . . . ... e e e e e
4.6.3 Model building . . . . . ... Lo
4.6.4  Stability . . . ... e
Anisotropies . . . . ... e
Anisotropy: Connection variables . . . . . . . . . ... L Lo
Anisotropy: Applications . . . . . . . . . ..
4.9.1 Isotropization . . . . . . . . . .. L e
4.9.2 Bianchi IX . . . .. . e
4.9.3 Isotropic curvature suppression . . . . . . . .. ..ol e e 0L
Anisotropy: Implications for inhomogeneities . . . . .. ... ... ... ... ...
Inhomogeneities . . . . . . . . Lo
Inhomogeneous matter with isotropic quantum geometry . . . . . . . . .. ... ..
Inhomogeneity: Perturbations . . . . . . . .. ... .o oo
Inhomogeneous models . . . . . . . . .. L
Inhomogeneity: Results . . . . . .. . .. .
4.15.1 Matter gradient terms and small-a effects . . . . .. ... ... .. ...
4.15.2 Matter gradient terms and large-a effects . . . . .. ... ...
4.15.3 Non-inflationary structure formation . . . . . . . . ... .. ... .. ...
4.15.4 Stability . . . . .o
SUMMATY . . . o o ot e e e e e e e

5 Loop quantization of symmetric models

5.1
5.2
5.3
5.4
5.5

Symmetries and backgrounds . . . .. ..o Lo
Isotropy . . . . . e e
Isotropy: Matter Hamiltonian . . . . . . ... ... ... . 0oL
Isotropy: Hamiltonian constraint . . . . . . . . . . . ... ... ... ...
Semiclassical limit and correction terms . . . . . . .. ..o L.
5.5.1 WKB approximation . . . . . . . .. ..o L Lo

10
11
12
13
14

15
15
16
17
18
19
20
20
21
24
24
25
26
26
26
27
30
32
32
33
34
34
35
35
36
36
37
37



5.5.2 Effective formulation . . . . . . . . . .. 45

5.6 Homogeneity . . . . . . . . . e 46
5.7 Diagonalization . . . . . . . . . L e e e 46
5.8 Homogeneity: Dynamics . . . . . . . . . .. oL o 47
5.9 Inhomogeneous models . . . . . . .. oL Lo 48
5.10 Einstein—Rosen waves . . . . . . . . . . L Lo e 48
5.10.1 Canonical variables . . . . . . . . ... L 48

5.10.2 Representation . . . . . . . .. . e 49

5.11 Spherical symmetry . . . . . oL L e 50
5.12 Loop inspired quantum cosmology . . . . . . . . . . ... 51
5.13 Dynamics . . . . . . . Lo e e e 51
5.14 Dynamics: General construction . . . . .. .. ... L Lo oo 52
5.15 Singularities . . . . . . . . e 53
5.16 Initial/boundary value problems . . . .. ... ... .. ... o L. 56
5.17 Pre-classicality and boundedness . . . . . . . . ... ... L. 57
5.18 Dynamical initial conditions . . . . . . ... L oo oo 58
5.19 Summary . . ... e e 59

6 Models within the Full Theory 61
6.1 Symmetric states . . . . ..o L 61
6.2 Basicoperators . . . . . ... e 63
6.3 Quantization before reduction . . . . . . .. L. oL oL o 64
6.4 Minisuperspace approximation . . . . . . . . ... 0o e e 65
6.5 Quantum geometry from models to the full theory . . .. ... ... ... ... .. 66

7 Philosophical Ramifications 68
7.1 Unique theories, unique solutions . . . . . . ... .. ... L o L. 68
7.2 Theroleof time. . . . . . . . . . . e e e e 69
7.3 Determinism . . . . . ... 71

8 Research Lines 73
8.1 Conceptual ISSUES . . . . . . . . v i e e e e e e e e e 73
8.2 Mathematical development of models . . . . . . .. ... .. ... oL 73
8.3 Applications . . . . . . . 74
8.4 Homogeneous models . . . . . . . . .. L e 74
8.5 Outlook . . . . . . e 75

A Invariant connections 76
A.1 Partial backgrounds . . . . . ... 76
A.2 Classification of symmetric principal fiber bundles . . . . ... .. ... ... ... 77
A.3 Classification of invariant connections . . . . . . . . ... ... ... ... .. 78

B Examples 80
B.1 Homogeneous models . . . . . . . . . oL L 80
B.2 Isotropic models . . . . . . . . . .. e 80
B.3 Spherical symmetry . . ... Lo 82

References 99



Loop Quantum Cosmology 5

1 Introduction

Die Grenzen meiner Sprache bedeuten die Grenzen meiner Welt.

(The limits of my language mean the limits of my world.)
LubpwiG WITTGENSTEIN
Tractatus logico-philosophicus

While general relativity is very successful in describing the gravitational interaction and the
structure of space and time on large scales [205], quantum gravity is needed for the small-scale
behavior. This is usually relevant when curvature, or in physical terms energy densities and tidal
forces, becomes large. In cosmology this is the case close to the Big Bang, and also in the interior
of black holes. We are thus able to learn about gravity on small scales by looking at the early
history of the universe.

Starting with general relativity on large scales and evolving backward in time, the universe
becomes smaller and smaller and quantum effects eventually become important. That the classical
theory by itself cannot be sufficient to describe the history in a well-defined way is illustrated by
singularity theorems [123] which also apply in this case: After a finite time of backward evolution
the classical universe will collapse into a single point and energy densities diverge. At this point,
the theory breaks down and cannot be used to determine what is happening there. Quantum
gravity, with its different dynamics on small scales, is expected to solve this problem.

The quantum description does not only present a modified dynamical behavior on small scales
but also a new conceptual setting. Rather than dealing with a classical space-time manifold, we
now have evolution equations for the wave function of a universe. This opens a vast number
of problems on various levels from mathematical physics to cosmological observations, and even
philosophy. This review is intended to give an overview and summary of the current status of those
problems, in particular in the new framework of loop quantum cosmology.
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2 The Viewpoint of Loop Quantum Cosmology

Loop quantum cosmology is based on quantum Riemannian geometry, or loop quantum gravity
[172, 22, 195, 174], which is an attempt at a non-perturbative and background independent quan-
tization of general relativity. This means that no assumptions of small fields or the presence of a
classical background metric are made, both of which is expected to be essential close to classical
singularities where the gravitational field would diverge and space degenerates. In contrast to other
approaches to quantum cosmology there is a direct link between cosmological models and the full
theory [38, 66], as we will describe later in Section 6. With cosmological applications we are thus
able to test several possible constructions and draw conclusions for open issues in the full theory.
At the same time, of course, we can learn about physical effects which have to be expected from
properties of the quantization and can potentially lead to observable predictions. Since the full
theory is not completed yet, however, an important issue in this context is the robustness of those
applications to choices in the full theory and quantization ambiguities.

The full theory itself is, understandably, extremely complex and thus requires approximation
schemes for direct applications. Loop quantum cosmology is based on symmetry reduction, in
the simplest case to isotropic geometries [46]. This poses the mathematical problem as to how the
quantum representation of a model and its composite operators can be derived from that of the full
theory, and in which sense this can be regarded as an approximation with suitable correction terms.
Research in this direction currently proceeds by studying symmetric models with less symmetries
and the relations between them. This allows to see what role anisotropies and inhomogeneities
play in the full theory.

While this work is still in progress, one can obtain full quantizations of models by using basic
features as they can already be derived from the full theory together with constructions of more
complicated operators in a way analogous to what one does in the full theory (see Section 5). For
those complicated operators, the prime example being the Hamiltonian constraint which dictates
the dynamics of the theory, the link between model and the full theory is not always clear-cut.
Nevertheless, one can try different versions in the model in explicit ways and see what implications
this has, so again the robustness issue arises. This has already been applied to issues such as
the semiclassical limit and general properties of quantum dynamics. Thus, general ideas which
are required for this new, background independent quantization scheme, can be tried in a rather
simple context in explicit ways to see how those constructions work in practice.

At the same time, there are possible phenomenological consequences in the physical systems
being studied, which is the subject of Section 4. In fact it turned out, rather surprisingly, that
already very basic effects such as the discreteness of quantum geometry and other features briefly
reviewed in Section 3, for which a reliable derivation from the full theory is available, have very
specific implications in early universe cosmology. While quantitative aspects depend on quantiza-
tion ambiguities, there is a rich source of qualitative effects which work together in a well-defined
and viable picture of the early universe. In such a way, as illustrated later, a partial view of the
full theory and its properties emerges also from a physical, not just mathematical perspective.

With this wide range of problems being investigated we can keep our eyes open to input
from all sides. There are mathematical consistency conditions in the full theory, some of which
are identically satisfied in the simplest models (such as the isotropic model which has only one
Hamiltonian constraint and thus a trivial constraint algebra). They are being studied in different,
more complicated models and also in the full theory directly. Since the conditions are not easy
to satisfy, they put stringent bounds on possible ambiguities. From physical applications, on the
other hand, we obtain conceptual and phenomenological constraints which can be complementary
to those obtained from consistency checks. All this contributes to a test and better understanding
of the background independent framework and its implications.

Other reviews of loop quantum cosmology at different levels can be found in [56, 55, 199, 50,
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69, 51, 96]. For complementary applications of loop quantum gravity to cosmology see [140, 141,
2, 114, 152, 1].
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3 Loop Quantum Gravity

Since many reviews of full loop quantum gravity [172, 195, 22, 174, 161] as well as shorter accounts
[9, 10, 173, 190, 167, 198] are already available, we describe here only those properties which will
be essential later on. Nevertheless, this review is mostly self-contained; our notation is closest to
that in [22]. A recent bibliography can be found in [93].

3.1 Geometry

General relativity in its canonical formulation [6] describes the geometry of space-time in terms
of fields on spatial slices. Geometry on such a spatial slice 3 is encoded in the spatial metric g4,
which presents the configuration variables. Canonical momenta are given in terms of extrinsic
curvature K, which is the derivative of the spatial metric under changing the spatial slice. Those
fields are not arbitrary since they are obtained from a solution of Einstein’s equations by choosing
a time coordinate defining the spatial slices, and space-time geometry is generally covariant. In the
canonical formalism this is expressed by the presence of constraints on the fields, the diffeomorphism
constraint and the Hamiltonian constraint. The diffeomorphism constraint generates deformations
of a spatial slice or coordinate changes, and when it is satisfied spatial geometry does not depend
on which coordinates we choose on space. General covariance of space-time geometry also for
the time coordinate is then completed by imposing the Hamiltonian constraint. This constraint,
furthermore, is important for the dynamics of the theory: Since there is no absolute time, there is
no Hamiltonian generating evolution, but only the Hamiltonian constraint. When it is satisfied, it
encodes correlations between the physical fields of gravity and matter such that evolution in this
framework is relational. The reproduction of a space-time metric in a coordinate dependent way
then requires to choose a gauge and to compute the transformation in gauge parameters (including
the coordinates) generated by the constraints.

It is often useful to describe spatial geometry not by the spatial metric but by a triad e which
defines three vector fields which are orthogonal to each other and normalized in each point. This
yields all information about spatial geometry, and indeed the inverse metric is obtained from the
triad by ¢®® = efe? where we sum over the index i counting the triad vector fields. There are
differences, however, between metric and triad formulations. First, the set of triad vectors can be
rotated without changing the metric, which implies an additional gauge freedom with group SO(3)
acting on the index i. Invariance of the theory under those rotations is then guaranteed by a Gauss
constraint in addition to the diffeomorphism and Hamiltonian constraints.

The second difference will turn out to be more important later on: We can not only rotate
the triad vectors but also reflect them, i.e., change the orientation of the triad given by sgndet e.
This does not change the metric either, and so could be included in the gauge group as O(3).
However, reflections are not connected to the unit element of O(3) and thus are not generated by
a constraint. It then has to be seen whether or not the theory allows to impose invariance under
reflections, i.e., if its solutions are reflection symmetric. This is not usually an issue in the classical
theory since positive and negative orientations on the space of triads are separated by degenerate
configurations where the determinant of the metric vanishes. Points on the boundary are usually
singularities where the classical evolution breaks down such that we will never connect between
both sides. However, since there are expectations that quantum gravity may resolve classical
singularities, which indeed are confirmed in loop quantum cosmology, we will have to keep this
issue in mind and not restrict to only one orientation from the outset.

3.2 Ashtekar variables

To quantize a constrained canonical theory one can use Dirac’s prescription [105] and first represent
the classical Poisson algebra of a suitable complete set of basic variables on phase space as an

Living Reviews in Relativity
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operator algebra on a Hilbert space, called kinematical. This ignores the constraints, which can
be written as operators on the same Hilbert space. At the quantum level the constraints are
then solved by determining their kernel, to be equipped with an inner product so as to define the
physical Hilbert space. If zero is in the discrete part of the spectrum of a constraint, as e.g., for the
Gauss constraint when the structure group is compact, the kernel is a subspace of the kinematical
Hilbert space to which the kinematical inner product can be restricted. If, on the other hand, zero
lies in the continuous part of the spectrum, there are no normalizable eigenstates and one has to
construct a new physical Hilbert space from distributions. This is the case for the diffeomorphism
and Hamiltonian constraints.

To perform the first step we need a Hilbert space of functionals t[q] of spatial metrics. Un-
fortunately, the space of metrics, or alternatively extrinsic curvature tensors, is mathematically
poorly understood and not much is known about suitable inner products. At this point, a new
set of variables introduced by Ashtekar [7, 8, 30] becomes essential. This is a triad formulation,
but uses the triad in a densitized form (i.e., it is multiplied with an additional factor of a Jaco-
bian under coordinate transformations). The densitized triad E{ is then related to the triad by

£ = |det eg’. | -t e? but has the same properties concerning gauge rotations and its orientation (note
the absolute value which is often omitted). The densitized triad is conjugate to extrinsic curvature
coeflicients K}, := Kabei-’:
. b b i
{K.(2), Ej(y)} = 8nG0,656(x,y) (1)

with the gravitational constant G. Extrinsic curvature is then replaced by the Ashtekar connection

Ay =T, +7K, (2)

with a positive value for ~, the Barbero-Immirzi parameter [30, 133]. Classically, this number
can be changed by a canonical transformation of the fields, but it will play a more important and
fundamental role upon quantization. The Ashtekar connection is defined in such a way that it is
conjugate to the triad,

{AL(2), B} (y)} = 871G ,0;0(x, y) 3)

and obtains its transformation properties as a connection from the spin connection

I = —eijkeg(a[aelz] + %eiefla[ceé]). (4)

Spatial geometry is then obtained directly from the densitized triad, which is related to the
spatial metric by
EYE} = ¢* det q.

There is more freedom in a triad since it can be rotated without changing the metric. The theory
is independent of such rotations provided the Gauss constraint

1

GIAl = 81vG

) 1 ) )
/ ds.’lﬁ AzDaEZq = / d3l‘ A’(@aEf + eijkAzlEg) ~0 (5)
b)) G s '

© 87

is satisfied. Independence from any spatial coordinate system or background is implemented by
the diffeomorphism constraint (modulo Gauss constraint)

1
- 81yG

DI[N“] /E d®z N°F!, E? ~ 0, (6)

with the curvature F ;b of the Ashtekar connection. In this setting, one can then discuss spatial
geometry and its quantization.

Living Reviews in Relativity
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Space-time geometry, however, is more complicated to deduce since it requires a good knowledge
of the dynamics. In a canonical setting, dynamics is implemented by the Hamiltonian constraint

1

H[N] =
V] 167mvG

/ A3z N |det B| '/ (eiij;bE;E,ﬁ —2(1+ WZ)KEGKZ]E;IE;?) ~0, (7
>

where extrinsic curvature components have to be understood as functions of the Ashtekar connec-
tion and the densitized triad through the spin connection.

3.3 Representation

The key new aspect is now that we can choose the space of Ashtekar connections as our configura-
tion space whose structure is much better understood than that of a space of metrics. Moreover,
the formulation lends itself easily to a background independent quantization. To see this we need
to remember that quantizing field theories requires one to smear fields, i.e., to integrate them over
regions in order to obtain a well-defined algebra without d-functions as in Equation (3). Usually
this is done by integrating both configuration and momentum variables over three-dimensional
regions, which requires an integration measure. This is no problem in ordinary field theories,
which are formulated on a background such as Minkowski or a curved space. However, doing this
here for gravity in terms of Ashtekar variables would immediately spoil any possible background
independence since a background would already occur at this very basic step.

There is now a different smearing available that does not require a background metric. Instead
of using three-dimensional regions we integrate the connection along one-dimensional curves e and
exponentiate in a path-ordered manner, resulting in holonomies

he(A) = Pexp / T AL dt (8)
e

with tangent vector € to the curve e and 7; = —%iaj in terms of Pauli matrices. The path
ordered exponentiation needs to be done in order to obtain a covariant object from the non-
Abelian connection. The prevalence of holonomies or, in their most simple gauge invariant form
as Wilson loops trh.(A) for closed e, is the origin of loop quantum gravity and its name [175].
Similarly, densitized vector fields can naturally be integrated over 2-dimensional surfaces, resulting
in fluxes

Fs(E) = / T Efng, d%y (9)
S

with the co-normal n, to the surface.

The Poisson algebra of holonomies and fluxes is now well-defined and one can look for repre-
sentations on a Hilbert space. We also require diffeomorphism invariance, i.e., there must be a
unitary action of the diffeomorphism group on the representation by moving edges and surfaces
in space. This is required since the diffeomorphism constraint has to be imposed later. Under
this condition, there is even a unique representation that defines the kinematical Hilbert space
[179, 180, 164, 183, 113, 146].

We can construct the Hilbert space in the representation where states are functionals of con-
nections. This can easily be done by using holonomies as “creation operators” starting with a
“sround state” which does not depend on connections at all. Multiplying with holonomies then
generates states that do depend on connections, but only along the edges used in the process.
These edges can be collected in a graph appearing as a label of the state. An independent set
of states is given by spin network states [178] associated with graphs whose edges are labeled by
irreducible representations of the gauge group SU(2), in which to evaluate the edge holonomies,
and whose vertices are labeled by matrices specifying how holonomies leaving or entering the vertex

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2005-11


http://www.livingreviews.org/lrr-2005-11

Loop Quantum Cosmology 11

are multiplied together. The inner product on this state space is such that these states, with an
appropriate definition of independent contraction matrices in vertices, are orthonormal.

Spatial geometry can be obtained from fluxes representing the densitized triad. Since these are
now momenta, they are represented by derivative operators with respect to values of connections on
the flux surface. States as constructed above depend on the connection only along edges of graphs
such that the flux operator is non-zero only if there are intersection points between its surface and
the graph in the state it acts on [145]. Moreover, the contribution from each intersection point
can be seen to be analogous to an angular momentum operator in quantum mechanics which has
a discrete spectrum [20]. Thus, when acting on a given state we obtain a finite sum of discrete
contributions and thus a discrete spectrum of flux operators. The spectrum depends on the value of
the Barbero—Immirzi parameter, which can accordingly be fixed using implications of the spectrum
such as black hole entropy, which gives a value of the order of but smaller than one [11, 12, 108, 155].
Moreover, since angular momentum operators do not commute, flux operators do not commute in
general [17]. There is thus no triad representation, which is another reason why using a metric
formulation and trying to build its quantization with functionals on a metric space is difficult.

There are important basic properties of this representation, which we will use later on. First,
as already noted, flux operators have discrete spectra and, secondly, holonomies of connections are
well-defined operators. It is, however, not possible to obtain operators for connection components or
their integrations directly but only in the exponentiated form. These are direct consequences of the
background independent quantization and translate to particular properties of more complicated
operators.

3.4 Function spaces

A connection 1-form A? can be reconstructed uniquely if all its holonomies are known [118]. It
is thus sufficient to parameterize the configuration space by matrix elements of h. for all edges
in space. This defines an algebra of functions on the infinite dimensional space of connections
A, which are multiplied as C-valued functions. Moreover, there is a duality operation by complex
conjugation, and if the structure group G is compact a supremum norm exists since matrix elements
of holonomies are then bounded. Thus, matrix elements form an Abelian C*-algebra with unit as
a subalgebra of all continuous functions on A.

Any Abelian C*-algebra with unit can be represented as the algebra of all continuous func-
tions on a compact space A. The intuitive idea is that the original space A, which has many
more continuous functions, is enlarged by adding new points to it. This increases the number of
continuity conditions and thus shrinks the set of continuous functions. This is done until only
matrix elements of holonomies survive when continuity is imposed, and it follows from general
results that the enlarged space must be compact for an Abelian unital C*-algebra. We thus obtain
a compactification A, the space of generalized connections [23], which densely contains the space
A.

There is a natural diffeomorphism invariant measure dyuar, on A, the Ashtekar-Lewandowski
measure [19], which defines the Hilbert space H = L?(A,duar) of square integrable functions
on the space of generalized connections. A dense subset Cyl of functions is given by cylindrical
functions f(he,,...,he,), which depend on the connection through a finite but arbitrary number
of holonomies. They are associated with graphs g formed by the edges eq, ..., e,. For functions
cylindrical with respect to two identical graphs the inner product can be written as

n

o) = [ dwar@r@yo@) = [ Tamth) S, g, h) (10)

SU@2)™ ;=1

with the Haar measure dupy on G. The importance of generalized connections can be seen from
the fact that the space A of smooth connections is a subset of measure zero in A [154].
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With the dense subset Cyl of ‘H we obtain the Gel’fand triple
CylC H C Cyl* (11)

with the dual Cyl® of linear functionals from Cyl to the set of complex numbers. Elements of
Cyl* are distributions, and there is no inner product on the full space. However, one can define
inner products on certain subspaces defined by the physical context. Often, those subspaces appear
when constraints with continuous spectra are solved following the Dirac procedure. Other examples
include the definition of semiclassical or, as we will use in Section 6, symmetric states.

3.5 Composite operators

From the basic operators we can construct more complicated ones which, with growing degree of
complexity, will be more and more ambiguous for instance from factor ordering choices. Quite
simple expressions exist for the area and volume operator [177, 20, 21], which are constructed
solely from fluxes. Thus, they are less ambiguous since no factor ordering issues with holonomies
arise. This is true because the area of a surface and volume of a region can be written classically
as functionals of the densitized triad alone, Ag = [¢\/E®n,E’nyd®y and Vg = [, \/|det E¢|d*z.
At the quantum level, this implies that, just as fluxes, also area and volume have discrete spectra
showing that spatial quantum geometry is discrete. (For discrete approaches to quantum gravity
in general see [150].) All area eigenvalues are known explicitly, but this is not possible even in
principle for the volume operator. Nevertheless, some closed formulas and numerical techniques
exist [149, 103, 102, 83].

The length of a curve, on the other hand, requires the co-triad which is an inverse of the
densitized triad and is more problematic. Since fluxes have discrete spectra containing zero, they
do not have densely defined inverse operators. As we will describe below, it is possible to quantize
those expressions but requires one to use holonomies. Thus, here we encounter more ambiguities
from factor ordering. Still, one can show that also length operators have discrete spectra [192].

Inverse densitized triad components also arise when we try to quantize matter Hamiltonians
such as

1P} + E{E}0,¢0
H¢:/d3x 7p¢ ¢ b¢

5 + 4/ |det ES|V (¢) (12)

’det E]C‘
for a scalar field ¢ with momentum pg4 and potential V(¢) (not to be confused with volume). The
inverse determinant again cannot be quantized directly by using, e.g., an inverse of the volume
operator which does not exist. This seems, at first, to be a severe problem not unlike the situation
in quantum field theory on a background where matter Hamiltonians are divergent. Yet, it turns
out that quantum geometry allows one to quantize these expressions in a well-defined manner [193].

To do this, we notice that the Poisson bracket of the volume with connection components,

_ g EYE¢
{Afl,/\/\detE|d3x} zszewkeabcﬁ, (13)
€

amounts to an inverse of densitized triad components and does allow a well-defined quantization:
we can express the connection component through holonomies, use the volume operator and turn
the Poisson bracket into a commutator. Since all operators involved have a dense intersection of
their domains of definition, the resulting operator is densely defined and amounts to a quantization
of inverse powers of the densitized triad.

This also shows that connection components or holonomies are required in this process, and

-1
thus ambiguities can arise even if initially one starts with an expression such as y/|det E| , which
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only depends on the triad. There are also many different ways to rewrite expressions as above,
which all are equivalent classically but result in different quantizations. In classical regimes this
would not be relevant, but can have sizeable effects at small scales. In fact, this particular aspect,
which as a general mechanism is a direct consequence of the background independent quantization
with its discrete fluxes, implies characteristic modifications of the classical expressions on small
scales. We will discuss this and more detailed examples in the cosmological context in Section 4.

3.6 Hamiltonian constraint

Similarly to matter Hamiltonians one can also quantize the Hamiltonian constraint in a well-defined
manner [194]. Again, this requires to rewrite triad components and to make other regularization
choices. Thus, there is not just one quantization but a class of different possibilities.

It is more direct to quantize the first part of the constraint containing only the Ashtekar
curvature. (This part agrees with the constraint in Euclidean signature and Barbero-Immirzi
parameter v = 1, and so is sometimes called Euclidean part of the constraint.) Triad components
and their inverse determinant are again expressed as a Poisson bracket using the identity (13), and
curvature components are obtained through a holonomy around a small loop « of coordinate size
A and with tangent vectors s¢ and s$ at its base point [176]:

s¢sSFL T = A7 (hg — 1) + O(A). (14)

Putting this together, an expression for the Euclidean part H¥[N] can then be constructed in the
schematic form

HY[N] o< Y " N(@)e" K tr (hay, here {h3 V) + O(A), (15)

where one sums over all vertices of a triangulation of space whose tetrahedra are used to define
closed curves ay; and transversal edges sk .

An important property of this construction is that coordinate functions such as A disappear
from the leading term, such that the coordinate size of the discretization is irrelevant. Nevertheless,
there are several choices to be made, such as how a discretization is chosen in relation to a graph
the constructed operator is supposed to act on, which in later steps will have to be constrained by
studying properties of the quantization. Of particular interest is the holonomy h, since it creates
new edges to a graph, or at least new spin on existing ones. Its precise behavior is expected to
have a strong influence on the resulting dynamics [189]. In addition, there are factor ordering
choices, i.e., whether triad components appear to the right or left of curvature components. It
turns out that the expression above leads to a well-defined operator only in the first case, which in
particular requires an operator non-symmetric in the kinematical inner product. Nevertheless, one
can always take that operator and add its adjoint (which in this full setting does not simply amount
to reversing the order of the curvature and triad expressions) to obtain a symmetric version, such
that the choice still exists. Another choice is the representation chosen to take the trace, which
for the construction is not required to be the fundamental one [116].

The second part of the constraint is more complicated since one has to use the function I'(E) in
K. Asalso developed in [194], extrinsic curvature can be obtained through the already constructed
Euclidean part via K ~ {H®,V}. The result, however, is rather complicated, and in models one
often uses a more direct way exploiting the fact that I' has a more special form. In this way,
additional commutators in the general construction can be avoided, which usually does not have
strong effects. Sometimes, however, these additional commutators can be relevant, which can
always be decided by a direct comparison of different constructions (see, e.g., [125]).
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3.7 Open issues

For an anomaly-free quantization the constraint operators have to satisfy an algebra mimicking
the classical one. There are arguments that this is the case for the quantization as described above
when each loop « contains exactly one vertex of a given graph [191], but the issue is still open.
Moreover, the operators are quite complicated and it is not easy to see if they have the correct
expectation values in appropriately defined semiclassical states.

Even if one regards the quantization and semiclassical issues as satisfactory, one has to face
several hurdles in evaluating the theory. There are interpretational issues of the wave function
obtained as a solution to the constraints, and also the problem of time or observables emerges
[143]. There is a wild mixture of conceptual and technical problems at different levels, not at least
because the operators are quite complicated. For instance, as seen in the rewriting procedure above,
the volume operator plays an important role even if one is not necessarily interested in the volume
of regions. Since this operator is complicated, without an explicitly known spectrum, it translates
to complicated matrix elements of the constraints and matter Hamiltonians. Loop quantum gravity
should thus be considered as a framework rather than a uniquely defined theory, which however
has important rigid aspects. This includes the basic representation of the holonomy-flux algebra
and its general consequences.

All this should not come as a surprise since even classical gravity, at this level of generality, is
complicated enough. Most solutions and results in general relativity are obtained with approxima-
tions or assumptions, one of the most widely used being symmetry reduction. In fact, this allows
access to the most interesting gravitational phenomena such as cosmological expansion, black holes
and gravitational waves. Similarly, symmetry reduction is expected to simplify many problems of
full quantum gravity by resulting in simpler operators and by isolating conceptual problems such
that not all of them need to be considered at once.
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4 Loop Cosmology

Je abstrakter die Wahrheit ist, die du lehren willst, um so mehr muf$t du noch die Sinne
zu thr verfihren.

(The more abstract the truth you want to teach is, the more you have to seduce to it

the senses.)
FRIEDRICH NIETZSCHE
Beyond Good and Evil

The gravitational field equations, for instance in the case of cosmology where one can as-
sume homogeneity and isotropy, involve components of curvature as well as the inverse metric.
(Computational methods to derive information from these equations are described in [5].) Since
singularities occur, these components will become large in certain regimes, but the equations have
been tested only in small curvature regimes. On small length scales such as close to the Big Bang,
modifications to the classical equations are not ruled out by observations and can be expected
from candidates of quantum gravity. Quantum cosmology describes the evolution of a universe by
a constraint equation for a wave function, but some effects can be included already at the level
of effective classical equations. In loop quantum gravity, the main modification happens through
inverse metric components which, e.g., appear in the kinematic term of matter Hamiltonians. This
one modification is mainly responsible for all the diverse effects of loop cosmology.

4.1 TIsotropy

Isotropy reduces the phase space of general relativity to be 2-dimensional since, up to SU(2)-gauge
freedom, there is only one independent component in an isotropic connection and triad, respectively,
which is not already determined by the symmetry. This is analogous to metric variables, where
the scale factor a is the only free component in the spatial part of an isotropic metric

ds? = =N ()2 dt? + a(t)?((1 — kr?) "1 dr? + r2 dQ?). (16)

The lapse function N(¢) does not play a dynamical role and correspondingly does not appear in
the Friedmann equation

2
() + CLLZ == %a_SHmatter(a) (17)
with the matter Hamiltonian H.tter and the gravitational constant G, and the parameter k taking
the discrete values zero or +1 depending on the symmetry group or intrinsic spatial curvature.

Indeed, N (t) can simply be absorbed into the time coordinate by defining proper time 7 through
dr = N(t)dt. This is not possible for the scale factor since it depends on time but multiplies space
differentials in the line element. The scale factor can only be rescaled by an arbitrary constant,
which can be normalized at least in the closed model where k = 1.

One can understand these different roles of metric components also from a Hamiltonian analysis
of the Einstein—Hilbert action

— 1 3
SEH = 167TG/dtd l‘R[g]

specialized to isotropic metrics (16) whose Ricci scalar is

a N2g  NZ2a2 a2 aN3 |
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The action then becomes

VO 3 3% ad2
= dt N =— [dtN|——=—= +k
167G / =G Nz the
with the spatial coordinate volume Vy = [, d3x) after integrating by parts, from which one derives
bY g g
the momenta
oL 3Vy aa oL

PN N

Pa= 94 = T1xG N
illustrating the different roles of @ and N. Since py must vanish, IV is not a degree of freedom but
a Lagrange multiplier. It appears in the canonical action S = (167G)~! [ dt(ap, — NH)) only as

a factor of ,
2nG 3
T Pa —Vhak
3 V()CL 881G
such that variation with respect to N forces H, the Hamiltonian constraint, to be zero. In the
presence of matter, H also contains the matter Hamiltonian, and its vanishing is equivalent to the
Friedmann equation.

H =

4.2 Isotropy: Connection variables

Isotropic connections and triads, as discussed in Appendix B.2, are analogously described by single
components ¢ and p, respectively, related to the scale factor by

2
9 a

Ip| =a” = T (18)

for the densitized triad component p and
.= . 1 .
C:F+’ya:§(k+’ya) (19)

for the connection component ¢. Both components are canonically conjugate:

8mvG
3

{¢,p} = Vo. (20)
It is convenient to absorb factors of Vj into the basic variables, which is also suggested by the
integrations in holonomies and fluxes on which background independent quantizations are built

[15]. We thus define

p=V"p, =V (21)

together with I' = Vol/ °T. The symplectic structure is then independent of V) and so are integrated
densities such as total Hamiltonians. For the Hamiltonian constraint in isotropic Ashtekar variables
we have

3, _
H = —m(v 2(c = T)? + T%)V/|p| + Humatter (p) = 0, (22)

which is exactly the Friedmann equation. (In most earlier papers on loop quantum cosmology some
factors in the basic variables and classical equations are incorrect due, in part, to the existence of
different and often confusing notations in the loop quantum gravity literature.')

IThe author is grateful to Ghanashyam Date and Golam Hossain for discussions and correspondence on this
issue.
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The part of phase space where we have p = 0 and thus a = 0 plays a special role since this is
where isotropic classical singularities are located. On this subset the evolution equation (17) with
standard matter choices is singular in the sense that Hpaster, €-8-,

1. [
Hy(a,6,p9) = 5p| S2p2 + P2V () (23)

for a scalar ¢ with momentum p, and potential V(¢), diverges and the differential equation does
not pose a well-defined initial value problem there. Thus, once such a point is reached the further
evolution is no longer determined by the theory. Since, according to singularity theorems [123, 80],
any classical trajectory must intersect the subset a = 0 for the matter we need in our universe, the
classical theory is incomplete.

This situation, certainly, is not changed by introducing triad variables instead of metric vari-
ables. However, the situation is already different since p = 0 is a submanifold in the classical phase
space of triad variables where p can have both signs (the sign determining whether the triad is
left or right handed, i.e., the orientation). This is in contrast to metric variables where a = 0 is
a boundary of the classical phase space. There are no implications in the classical theory since
trajectories end there nonetheless, but it will have important ramifications in the quantum theory
(see the sections following Section 5.13).

4.3 Isotropy: Implications of a loop quantization

We are now dealing with a simple system with finitely many degrees of freedom, subject to a
constraint. It is well known how to quantize such a system from quantum mechanics, which has
been applied to cosmology starting with DeWitt [104]. Here, one chooses a metric representation
for wave functions, i.e., ¥(a), on which the scale factor acts as multiplication operator and its
conjugate p,, related to a, as a derivative operator. These basic operators are then used to form
the Wheeler-DeWitt operator quantizing the constraint (17) once a factor ordering is chosen.

This prescription is rooted in quantum mechanics which, despite its formal similarity, is phys-
ically very different from cosmology. The procedure looks innocent, but one should realize that
there are already basic choices involved. Choosing the factor ordering is harmless, even though
results can depend on it [142]. More importantly, one has chosen the Schrédinger representation
of the classical Poisson algebra, which immediately implies the familiar properties of operators
such as the scale factor with a continuous spectrum. There are inequivalent representations with
different properties, and it is not clear that this representation, which works well in quantum me-
chanics, is also correct for quantum cosmology. In fact, quantum mechanics is not very sensitive to
the representation chosen [18] and one can use the most convenient one. This is the case because
energies and thus oscillation lengths of wave functions described usually by quantum mechanics
span only a limited range. Results can then be reproduced to arbitrary accuracy in any repre-
sentation. Quantum cosmology, in contrast, has to deal with potentially infinitely high matter
energies, leading to small oscillation lengths of wave functions, such that the issue of quantum
representations becomes essential.

That the Wheeler-DeWitt representation may not be the right choice is also indicated by the
fact that its scale factor operator has a continuous spectrum, while quantum geometry which
is a well-defined quantization of the full theory, implies discrete volume spectra. Indeed, the
Wheeler-DeWitt quantization of full gravity exists only formally, and its application to quantum
cosmology simply quantizes the classically reduced isotropic system. This is much easier, and also
more ambiguous, and leaves open many consistency considerations. It would be more reliable to
start with the full quantization and introduce the symmetries there, or at least follow the same
constructions of the full theory in a reduced model. If this is done, it turns out that indeed we
obtain a quantum representation inequivalent to the Wheeler—-DeWitt representation, with strong
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implications in high energy regimes. In particular, just as the full theory such a quantization has
a volume or p operator with a discrete spectrum, as derived in Section 5.2.

4.4 Isotropy: Effective densities and equations

The isotropic model is thus quantized in such a way that the operator p has a discrete spectrum
containing zero. This immediately leads to a problem since we need a quantization of [p|=3/2 in
order to quantize a matter Hamiltonian such as (23) where not only the matter fields but also
geometry are quantized. However, an operator with zero in the discrete part of its spectrum does
not have a densely defined inverse and does not allow a direct quantization of |p|_3/ 2,

This leads us to the first main effect of the loop quantization: It turns out that despite the
non-existence of an inverse operator of p one can quantize the classical \p|_3/ 2 to a well-defined
operator. This is not just possible in the model but also in the full theory where it even has been
defined first [193]. Classically, one can always write expressions in many equivalent ways, which
usually result in different quantizations. In the case of |p|*3/ 2 as discussed in Section 5.3, there is
a general class of ways to rewrite it in a quantizable manner [41] which differ in details but have
all the same important properties. This can be parameterized by a function d(p);; [47, 50] which
replaces the classical |p|_3/ 2 and strongly deviates from it for small p while being very close at
large p. The parameters j € %N and 0 < [ < 1 specify quantization ambiguities resulting from
different ways of rewriting. With the function

3 1-1 1 1+2 [+2
=2 — D2 _ -1 24
i) = 54 <l+2((q+ ) lg —1]"*?) (24)
1
- el 0 sl - Dlg - 1))
we have
d(p)ja = pl~*pi(3|pl /73 ) ¥ =2, (25)

which indeed fulfills d(p);; ~ Ip|=3/2 for |p| > p. := 1jvf3, but is finite with a peak around p.

3
and approaches zero at p = 0 in a manner

d(p)j,z N 33(371)/(2721)@ + 1)*3/(2*2”('yj)*3(2*”/(2’2”6;3(2_”/(1_”\p|3/(2*2l) (26)

as it follows from p;(q) ~ 3¢>~'/(1 +1). Some examples displaying characteristic properties are
shown in Figure 9 in Section 5.3.

The matter Hamiltonian obtained in this manner will thus behave differently at small p. At
those scales also other quantum effects such as fluctuations can be important, but it is possible to
isolate the effect implied by the modified density (25). We just need to choose a rather large value
for the ambiguity parameter j such that modifications become noticeable already in semiclassical
regimes. This is mainly a technical tool to study the behavior of equations, but can also be used
to find constraints on the allowed values of ambiguity parameters.

We can thus use classical equations of motion, which are corrected for quantum effects by using
the effective matter Hamiltonian

e 1
H™ (p,6.p6) = 5d(p)jap + 1PV (9) (27)

(see Section 5.5 for details on effective equations). This matter Hamiltonian changes the classical
constraint such that now

3 _ e
H =~ (e =T + TVl + Hy™ (p.6.ps) = 0. (28)
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Since the constraint determines all equations of motion, they also change: We obtain the effective
Friedmann equation from H = 0,

("‘>2 L ? (;p|_3/2d(p)j,lp§, + V(¢>)> (29)

a a

and the effective Raychaudhuri equation from ¢ = {¢, H},

a i7G aI_Imatter (p7 ¢7p¢)
= T 5 3/ Hmaer s &y -2
a 3[p[72 ( tter (D, @, D) — 2P ap (30)
871G _ 1 dlog(|p|*/2d(p),
= 3G (por2ap); 2 (1 - 1LYy ), (31)
3 da
Matter equations of motion follow similarly as
¢ ={¢,H} = d(p);ps
p(b = {p¢7H} = _‘p|3/2vl(¢)’
which can be combined to the effective Klein—Gordon equation
. dlogd(p),,
b= ¢alBIL rzg) 1), (32)

Further discussion for different forms of matter can be found in [186].

4.5 Isotropy: Properties and intuitive meaning

As a consequence of the function d(p);, the effective equations have different qualitative behavior
at small versus large scales p. In the effective Friedmann equation (29), this is most easily seen by
comparing it with a mechanics problem with a standard Hamiltonian, or energy, of the form

_1,2_27TG

ArG 4
2a 3V —a“V

3

E afld(P)j,zPi - (¢) =0

restricted to be zero. If we assume a constant scalar potential V'(¢), there is no ¢-dependence and
the scalar equations of motion show that p is constant. Thus, the potential for the motion of a is
essentially determined by the function d(p);,.

In the classical case, d(p) = |p|~*/? and the potential is negative and increasing, with a diver-
gence at p = 0. The scale factor a is thus driven toward a = 0, which it will always reach in finite
time where the system breaks down. With the effective density d(p);,:, however, the potential is
bounded from below, and is decreasing from zero for a = 0 to the minimum around p,. Thus, the
scale factor is now slowed down before it reaches a = 0, which depending on the matter content
could avoid the classical singularity altogether.

The behavior of matter is also different as shown by the effective Klein-Gordon equation (32).
Most importantly, the derivative in the (;-S—term changes sign at small a since the effective density
is increasing there. Thus, the qualitative behavior of all the equations changes at small scales,
which as we will see gives rise to many characteristic effects. Nevertheless, for the analysis of the
equations as well as conceptual considerations it is interesting that solutions at small and large
scales are connected by a duality transformation [147], which even exists between effective solutions
for loop cosmology and braneworld cosmology [90].

We have seen that the equations of motion following from an effective Hamiltonian are expected
to display qualitatively different behavior at small scales. Before discussing specific models in detail,
it is helpful to observe what physical meaning the resulting modifications have.
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Classical gravity is always attractive, which implies that there is nothing to prevent collapse in
black holes or the whole universe. In the Friedmann equation this is expressed by the fact that the
potential as used before is always decreasing toward a = 0 where it diverges. With the effective
density, on the other hand, we have seen that the decrease stops and instead the potential starts to
increase at a certain scale before it reaches zero at a = 0. This means that at small scales, where
quantum gravity becomes important, the gravitational attraction turns into repulsion. In contrast
to classical gravity, thus, quantum gravity has a repulsive component which can potentially prevent
collapse. So far, this has only been demonstrated in homogeneous models, but it relies on a general
mechanism which is also present in the full theory.

Not only the attractive nature of gravity changes at small scales, but also the behavior of
matter in a gravitational background. Classically, matter fields in an expanding universe are
slowed down by a friction term in the Klein-Gordon equation (32) where adloga™3/da = —3a/a
is negative. Conversely, in a contracting universe matter fields are excited and even diverge when
the classical singularity is reached. This behavior turns around at small scales where the derivative
dlogd(a);/da becomes positive. Friction in an expanding universe then turns into antifriction
such that matter fields are driven away from their potential minima before classical behavior sets
in. In a contracting universe, on the other hand, matter fields are not excited by antifriction but
freeze once the universe becomes small enough.

These effects do not only have implications for the avoidance of singularities at a = 0 but
also for the behavior at small but non-zero scales. Gravitational repulsion can not only prevent
collapse of a contracting universe [187] but also, in an expanding universe, enhance its expansion.
The universe then accelerates in an inflationary manner from quantum gravity effects alone [45].
Similarly, the modified behavior of matter fields has implications for inflationary models [77].

4.6 Isotropy: Applications

There is now one characteristic modification in the matter Hamiltonian, coming directly from a
loop quantization. Its implications can be interpreted as repulsive behavior on small scales and
the exchange of friction and antifriction for matter, and it leads to many further consequences.

4.6.1 Collapsing phase

When the universe has collapsed to a sufficiently small size, repulsion becomes noticeable and
bouncing solutions become possible as illustrated in Figure 1. Requirements for a bounce are that
the conditions @ = 0 and @ > 0 can be fulfilled at the same time, where the first one can be
evaluated with the Friedmann equation, and the second one with the Raychaudhuri equation. The
first condition can only be fulfilled if there is a negative contribution to the matter energy, which
can come from a positive curvature term k = 1 or a negative matter potential V(¢) < 0. In those
cases, there are classical solutions with @ = 0, but they generically have & < 0 corresponding to a
recollapse. This can easily be seen in the flat case with a negative potential where (30) is strictly
negative with dloga®d(a);;/da ~ 0 at large scales.

The repulsive nature at small scales now implies a second point where @ = 0 from (29) at smaller
a since the matter energy now decreases also for a — 0. Moreover, the modified Raychaudhuri
equation (30) has an additional positive term at small scales such that @ > 0 becomes possible.

Matter also behaves differently through the modified Klein-Gordon equation (32). Classically,
with @ < 0 the scalar experiences antifriction and ¢ diverges close to the classical singularity. With
the modification, antifriction turns into friction at small scales, damping the motion of ¢ such that
it remains finite. In the case of a negative potential [68] this allows the kinetic term to cancel the
potential term in the Friedmann equation. With a positive potential and positive curvature, on the
other hand, the scalar is frozen and the potential is canceled by the curvature term. Since the scalar
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is almost constant, the behavior around the turning point is similar to a de Sitter bounce [187, 203].
Further, more generic possibilities for bounces arise from other correction terms [100, 97].
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Figure 1: Ezamples for bouncing solutions with positive curvature (left) or a negative potential
(right, negative cosmological constant). The solid lines show solutions of effective equations with a
bounce, while the dashed lines show classical solutions running into the singularity at a = 0 where
¢ diverges.

4.6.2 Expansion

Repulsion can not only prevent collapse but also accelerates an expanding phase. Indeed, using the
behavior (26) at small scales in the effective Raychaudhuri equation (30) shows that @ is generically
positive since the inner bracket is smaller than —1/2 for the allowed values 0 < I < 1. Thus, as
illustrated by the numerical solution in the upper left panel of Figure 2, inflation is realized by
quantum gravity effects for any matter field irrespective of its form, potential or initial values
[45]. The kind of expansion at early stages is generically super-inflationary, i.e., with equation of
state parameter w < —1. For free massless matter fields, w usually starts very small, depending
on the value of [, but with a non-zero potential such as a mass term for matter inflation w is
generically close to exponential: weg =~ —1. This can be shown by a simple and elegant argument
independently of the precise matter dynamics [101]: The equation of state parameter is defined as
w = P/p where P = —JF/0V is the pressure, i.e., the negative change of energy with respect to
volume, and p = E/V energy density. Using the matter Hamiltonian for F and V = |p|>/2, we
obtain

Pz = —§|p| 72 (0)p} — V(9)
and thus in the classical case )
lpI=%p3 — V(9)
3lpl=2p2 + V(¢)

as usually. In the modified case, however, we have

$lp|=V2d (p)p2 + V(¢
3lpl=32d(p)p3 + V(9)

~~

Weff = —
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Figure 2: Ezample for a solution of a(t) and ¢(t), showing early loop inflation and later slow-roll
inflation driven by a scalar that is pushed up its potential by loop effects. The left hand side is
stretched in time so as to show all details. An idea of the duration of different phases can be
obtained from Figure 5.
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a(t) ob)

V(o)

Figure 3:  Still from a Movie showing the initial push of a scalar ¢ up its potential and the
enswing slow-roll phase together with the corresponding inflationary phase of a. (To watch the
movie, please go to the online version of this review article at http: //www. livingreviews.
org/ lrr-2005-11.)

In general, we need to know the matter behavior to know w and weg. But we can get generic
qualitative information by treating py and V(¢) as unknowns determined by w and weg. In the
generic case, there is no unique solution for pi and V(¢) since, after all, ps and ¢ change with ¢.
They are now subject to two linear equations in terms of w and weg, whose determinant must be
zero resulting in

P72 (w + 1) (d(p) — 3pld'(p))
1—w+ (w+1)pP2dp)

Weg = —1 +

Since for small p the numerator in the fraction approaches zero faster than the second part of the
denominator, weg approaches minus one at small volume except for the special case w = 1, which
is realized for V(¢) = 0. Note that the argument does not apply to the case of vanishing potential
since then pi = const and V(¢) = 0 presents a unique solution to the linear equations for w and
weg. In fact, this case leads in general to a much smaller weg = —2|p|d(p)’/d(p) = —1/(1-1) < -1

One can also see from the above formula that weg, though close to minus one, is a little smaller
than minus one generically. This is in contrast to single field inflaton models where the equation
of state parameter is a little larger than minus one. As we will discuss in Section 4.15, this opens
the door to characteristic signatures distinguishing different models.

Again, also the matter behavior changes, now with classical friction being replaced by antifric-
tion [77]. Matter fields thus move away from their minima and become excited even if they start
close to a minimum (Figure 2). Since this does not only apply to the homogeneous mode, it can
provide a mechanism of structure formation as discussed in Section 4.15. But also in combination
with chaotic inflation as the mechanism to generate structure does the modified matter behav-
ior lead to improvements: If we now view the scalar ¢ as an inflaton field, it will be driven to
large values in order to start a second phase of slow-roll inflation which is long enough. This is

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2005-11


http://www.livingreviews.org/lrr-2005-11
http://www.livingreviews.org/lrr-2005-11
http://www.livingreviews.org/lrr-2005-11

24 Martin Bojowald

satisfied for a large range of the ambiguity parameters j and [ [67] and can even leave signatures
[197] in the cosmic microwave spectrum [134]: The earliest moments when the inflaton starts to
roll down its potential are not slow roll, as can also be seen in Figures 2 and 3 where the initial
decrease is steeper. Provided the resulting structure can be seen today, i.e., there are not too
many e-foldings from the second phase, this can lead to visible effects such as a suppression of
power. Whether or not those effects are to be expected, i.e., which magnitude of the inflaton is
generically reached by the mechanism generating initial conditions, is currently being investigated
at the basic level of loop quantum cosmology [27]. They should be regarded as first suggestions,
indicating the potential of quantum cosmological phenomenology, which have to be substantiated
by detailed calculations including inhomogeneities or at least anisotropic geometries. In particular
the suppression of power can be obtained by a multitude of other mechanisms.

4.6.3 Model building

It is already clear that there are different inflationary scenarios using effects from loop cosmology. A
scenario without inflaton is more attractive since it requires less choices and provides a fundamental
explanation of inflation directly from quantum gravity. However, it is also more difficult to analyze
structure formation in this context while there are already well-developed techniques in slow role
scenarios.

In these cases where one couples loop cosmology to an inflaton model one still requires the
same conditions for the potential, but generically gets the required large initial values for the
scalar by antifriction. On the other hand, finer details of the results now depend on the ambiguity
parameters, which describe aspects of the quantization that also arise in the full theory.

It is also possible to combine collapsing and expanding phases in cyclic or oscillatory models
[148]. One then has a history of many cycles separated by bounces, whose duration depends on
details of the model such as the potential. There can then be many brief cycles until eventually, if
the potential is right, one obtains an inflationary phase if the scalar has grown high enough. In this
way, one can develop ideas for the pre-history of our universe before the Big Bang. There are also
possibilities to use a bounce to describe the structure in the universe. So far, this has only been
described in effective models [137] using brane scenarios [151] where the classical singularity has
been assumed to be absent by yet to be determined quantum effects. As it turns out, the explicit
mechanism removing singularities in loop cosmology is not compatible with the assumptions made
in those effective pictures. In particular, the scalar was supposed to turn around during the bounce,
which is impossible in loop scenarios unless it encounters a range of positive potential during its
evolution [68]. Then, however, generically an inflationary phase commences as in [148], which is
then the relevant regime for structure formation. This shows how model building in loop cosmology
can distinguish scenarios that are more likely to occur from quantum gravity effects.

Cyclic models can be argued to shift the initial moment of a universe in the infinite past, but
they do not explain how the universe started. An attempt to explain this is the emergent universe
model [110, 112] where one starts close to a static solution. This is difficult to achieve classically,
however, since the available fixed points of the equations of motion are not stable and thus a
universe departs too rapidly. Loop cosmology, on the other hand, implies an additional fixed point
of the effective equations which is stable and allows to start the universe in an initial phase of
oscillations before an inflationary phase is entered [160, 53]. This presents a natural realization of
the scenario where the initial scale factor at the fixed point is automatically small so as to start
the universe close to the Planck phase.

4.6.4 Stability

Cosmological equations displaying super-inflation or antifriction are often unstable in the sense
that matter can propagate faster than light. This has been voiced as a potential danger for loop
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cosmology, too [94, 95]. An analysis requires inhomogeneous techniques at least at an effective
level, such as those described in Section 4.12. It has been shown that loop cosmology is free of
this problem, because the modified behavior for the homogeneous mode of the metric and matter
is not relevant for matter propagation [129]. The whole cosmological picture that follows from the
effective equations is thus consistent.

4.7 Anisotropies

Anisotropic models provide a first generalization of isotropic ones to more realistic situations.
They thus can be used to study the robustness of effects analyzed in isotropic situations and, at
the same time, provide a large class of interesting applications. An analysis in particular of the
singularity issue is important since the classical approach to a singularity can be very different
from the isotropic one. On the other hand, the anisotropic approach is deemed to be characteristic
even for general inhomogeneous singularities if the BKL scenario [31] is correct.

A general homogeneous but anisotropic metric is of the form

3
ds? = —N(t)*dt* + Z qr(t)w’ @ w’
I,J=1

with left-invariant 1-forms w! on space ¥, which, thanks to homogeneity, can be identified with

the simply transitive symmetry group S as a manifold. The left-invariant 1-forms satisfy the
Maurer—Cartan relations

1
dw’ = —§C§Kw‘] AwE

with the structure constants CT . of the symmetry group. In a matrix parameterization of the
symmetry group, one can derive explicit expressions for w! from the Maurer-Cartan form w!T; =
Orrc = g~ 'dg with generators T of S.

The simplest case of a symmetry group is an Abelian one with Cj- x = 0, corresponding to the
Bianchi I model. In this case, S is given by R3 or a torus, and left-invariant 1-forms are simply
w! = da! in Cartesian coordinates. Other groups must be restricted to class A models in this
context, satisfying 6’5 ; = 0 since otherwise there is no Hamiltonian formulation. The structure
constants can then be parameterized as C}, = €}, .n(D.

A common simplification is to assume the metric to be diagonal at all times, which corresponds
to a reduction technically similar to a symmetry reduction. This amounts to ¢;; = a?l)é 17 as well
as K1y = K| 1)5 1 for the extrinsic curvature with K; = a;. Depending on the structure constants,
there is also non-zero intrinsic curvature quantified by the spin connection components

1 2
;== (a‘]n‘] Tl % (g alnl) for erjx =1. (33)
2 \ag ay ajaK

This influences the evolution as follows from the Hamiltonian constraint

_871'G (aldgdg + 0,2[11&2 + agdllig — (F2F3 — anl)al — (I‘1F3 — HQFQ)CLQ

— (I1T2 — n°T'3)as) + Humatter(ar) = 0. (34)

In the vacuum Bianchi I case the resulting equations are easy to solve by a; o t* with
S ar =Y ;a% =1[135]. The volume ajasaz o t vanishes for ¢ = 0 where the classical singularity
appears. Since one of the exponents a; must be negative, however, only two of the a; vanish at
the classical singularity while the third one diverges. This already demonstrates how different the
behavior can be from the isotropic one and that anisotropic models provide a crucial test of any
mechanism for singularity resolution.
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4.8 Anisotropy: Connection variables

A densitized triad corresponding to a diagonal homogeneous metric has real components p! with
|p1\ = ajag if erjx = 1 [48]. Connection components are ¢c; = I'y + vK; = 't + yar and are
conjugate to the pr, {cr,p’} = 8myGd{. In terms of triad variables we now have spin connection
components

1(p* , p o plp*
r,— (P Pk 35
! 2(1@"“ +pKn 2" (35)

and the Hamiltonian constraint (in the absence of matter)

H:L [(caT'3 + esTa — Tol3) (L +972) — nler — y 2eacs) P°p’
Ry 213 312 213 Y 1—7 €03 ol
2 2 2 p'p?
+ [(01F3 +esy —Tilg)(1+97%) —nca —y~ 0163] 2
2 3 2 p'p?
+ [(011—‘2 + oI’y — Fng)(l + v ) —n’c3 —y 6102] pr . (36)

Unlike in isotropic models, we now have inverse powers of p! even in the vacuum case through
the spin connection, unless we are in the Bianchi I model. This is a consequence of the fact that not
just extrinsic curvature, which in the isotropic case is related to the matter Hamiltonian through
the Friedmann equation, leads to divergences but also intrinsic curvature. These divergences are
cut off by quantum geometry effects as before such that also the dynamical behavior changes.
This can again be dealt with by effective equations where inverse powers of triad components
are replaced by bounded functions [62]. However, even with those modifications, expressions for
curvature are not necessarily bounded unlike in the isotropic case. This comes from the presence
of different classical scales, ay, such that more complicated expressions as in I'; are possible, while
in the isotropic model there is only one scale and curvature can only be an inverse power of p,
which is then regulated by effective expressions like d(p).

4.9 Anisotropy: Applications
4.9.1 Isotropization

Matter fields are not the only contributions to the Hamiltonian in cosmology, but also the effect
of anisotropies can be included in this way to an isotropic model. The late time behavior of this
contribution can be shown to behave as a ¢ in the shear energy density [156], which falls off faster
than any other matter component. Thus, toward later times the universe becomes more and more
isotropic.

In the backward direction, on the other hand, this means that the shear term diverges most
strongly, which suggests that this term should be most relevant for the singularity issue. Even if
matter densities are cut off as discussed before, the presence of bounces would depend on the fate
of the anisotropy term. This simple reasoning is not true, however, since the behavior of shear
is only effective and uses assumptions about the behavior of matter. It can thus not simply be
extrapolated to early times. Anisotropies are independent degrees of freedom which affect the
evolution of the scale factor. But only in certain regimes can this contribution be modeled simply
by a function of the scale factor alone; in general one has to use the coupled system of equations
for the scale factor, anisotropies and possible matter fields.
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4.9.2 Bianchi IX

Modifications to classical behavior are most drastic in the Bianchi IX model with symmetry group
S =2 SU(2) such that n! = 1. The classical evolution can be described by a 3-dimensional mechanics
system with a potential obtained from (34) such that the kinetic term is quadratic in derivatives
of a; with respect to a time coordinate 7 defined by dt = ajasazdr. This potential

W(p") = (T2T's — n'T1)p?p® + (T10'3 — n’Ta)p'p® + ([T — n’T's)p'p? (37)

= % ((p;}f)Q + (p;fg)z + (p;§2>2 —2(p")? —2(p%)* - 2(p3)2>

diverges at small p, in particular (in a direction dependent manner) at the classical singularity
where all p! = 0. Figure 4 illustrates the walls of the potential, which with decreasing volume push
the universe toward the classical singularity.
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Figure 4:  Still from a Movie illustrating the Bianchi IX potential (37) and the movement of
its walls, rising toward zero p' and p? and along the diagonal direction, toward the classical
singularity with decreasing volume V. = /|plp?p3|. The contours are plotted for the function
W(pt,p?,V2/(p'p?)). (To watch the movie, please go to the online version of this review article
at http: //www. livingreviews. org/ lrr-2005-11.)

As before in isotropic models, effective equations where the behavior of eigenvalues of the spin
connection components is used do not have this divergent potential. Instead, if two p! are held
fixed and the third approaches zero, the effective quantum potential is cut off and goes back to
zero at small values, which changes the approach to the classical singularity. Yet, the effective
potential is unbounded if one p’ diverges while another one goes to zero and the situation is
qualitatively different from the isotropic case. Since the effective potential corresponds to spatial
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intrinsic curvature, curvature is not bounded in anisotropic effective models. However, this is a
statement only about curvature expressions on minisuperspace, and the more relevant question
is what happens to curvature along trajectories obtained by solving equations of motion. This
demonstrates that dynamical equations must always be considered to draw conclusions for the
singularity issue.

The approach to the classical singularity is best analyzed in Misner variables [157] consisting
of the scale factor €2 := —% log V' and two anisotropy parameters G+ defined such that
= 0201

_ 679+,3++\/§/67 _ 679+B+7\/§B7
b b

aq az as

The classical potential then takes the form
1
W(R,Bs) = Je* (e*w+ — 4¢P+ cosh(2v/36_) + 2¢¥7+ (cosh(4v/36_) — 1)) :

which at fixed €2 has three exponential walls rising from the isotropy point S+ = 0 and enclosing

a triangular region (Figure 5).
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Figure 5:  Still from a Mowie illustrating the Bianchi IX potential in the anisotropy plane and
its exponentially rising walls. Positive values of the potential are drawn logarithmically with solid
contour lines and negative values with dashed contour lines. (To watch the movie, please go to the
online version of this review article at http: //www. livingreviews. org/ lrr-2005-11.)

A cross section of a wall can be obtained by taking 5_ = 0 and 3, to be negative, in which case
the potential becomes W (Q, 84,0) ~ 56’49*85# One thus obtains the picture of a point moving
almost freely until it is reflected at a wall. In between reflections, the behavior is approximately
given by the Kasner solution described before. This behavior with infinitely many reflections before
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Figure 6: Approximate effective wall of finite height [60] as a function of x = —f4, compared to the
classical exponential wall (upper dashed curve). Also shown is the exact wall W (p',pt, (V/p)?)

(lower dashed curve), which for x smaller than the peak value coincides well with the approzimation
up to a small, nearly constant shift.
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the classical singularity is reached, can be shown to be chaotic [32], which suggests a complicated
approach to classical singularities in general.

With the effective modification, however, the potential for fixed {2 does not diverge and the
walls, as shown in Figure 6, break down already at a small but non-zero volume [60]. As a function
of densitized triad components the effective potential is illustrated in Figure 7, and as a function
on the anisotropy plane in Figure 8. In this scenario, there are only finitely many reflections, which
does not lead to chaotic behavior but instead results in asymptotic Kasner behavior [61].
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Figure 7:  Still from a Movie illustrating the effective Bianchi IX potential and the movement and
breakdown of its walls. The contours are plotted as in Figure 4. (To watch the movie, please go to
the online version of this review article at http: //www. livingreviews. org/ lrr-2005-11.)

Comparing Figure 5 with Figure 8 shows that in their center they are very close to each other,
while strong deviations occur for large anisotropies. This demonstrates that most of the classical
evolution, which mostly happens in the inner triangular region, is not strongly modified by the
effective potential. Quantum effects are important only when anisotropies become too large, for
instance when the system moves deep into one of the three valleys, or the total volume becomes
small. In those regimes the quantum evolution will take over and describe the further behavior of
the system.

4.9.3 Isotropic curvature suppression

If we use the potential for time coordinate ¢ rather than 7, it is replaced by W/(p'p?p?), which in the
isotropic reduction p! = p? = p? = %aZ gives the curvature term ka~2. Although the anisotropic
effective curvature potential is not bounded it is, unlike the classical curvature, bounded from
above at any fixed volume. Moreover, it is bounded along the isotropy line and decays when a
approaches zero. Thus, there is a suppression of the divergence in ka~2 when the closed isotropic
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Figure 8:  Still from a Movie illustrating the effective Bianchit IX potential in the anisotropy
plane and its walls of finite height, which disappear at finite volume. Positive values of the po-
tential are drawn logarithmically with solid contour lines and negative values with dashed con-
tour lines. (To watch the movie, please go to the online version of this review article at
http: //www. livingreviews. org/ lrr-2005-11.)
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model is viewed as embedded in a Bianchi IX model. Similarly to matter Hamiltonians, intrinsic
curvature then approaches zero at zero scale factor.

This is a further illustration for the special nature of isotropic models compared to anisotropic
ones. In the classical reduction, the p! in the anisotropic spin connection cancel such that the spin
connection is a constant and no special steps are needed for its quantization. By viewing isotropic
models within anisotropic ones, one can consistently realize the model and see a suppression of
intrinsic curvature terms. Anisotropic models, on the other hand, do not have, and do not need,
complete suppression since curvature functions can still be unbounded.

4.10 Anisotropy: Implications for inhomogeneities

Even without implementing inhomogeneous models the previous discussion allows some tentative
conclusions as to the structure of general singularities. This is based on the BKL picture [31] whose
basic idea is to study Einstein’s field equations close to a singularity. One can then argue that
spatial derivatives become subdominant compared to time-like derivatives such that the approach
should locally be described by homogeneous models, in particular the Bianchi IX model since it
has the most freedom in its general solution.

Since spatial derivatives are present, though, they lead to small corrections and couple the
geometries in different spatial points. One can visualize this by starting with an initial slice
which is approximated by a collection of homogeneous patches. For some time, each patch evolves
independently of the others, but this is not precisely true since coupling effects have been ignored.
Moreover, each patch geometry evolves in a chaotic manner, which means that two initially nearby
geometries depart rapidly from each other. The approximation can thus be maintained only if the
patches are subdivided during the evolution, which goes on without limits in the approach to the
singularity. There is, thus, more and more inhomogeneous structure being generated on arbitrarily
small scales, which leads to a complicated picture of a general singularity.

This picture can be taken over to the effective behavior of the Bianchi IX model. Here, the
patches do not evolve chaotically even though at larger volume they follow the classical behavior.
The subdivision thus has to be done also for the initial effective evolution. At some point, however,
when reflections on the potential walls stop, the evolution simplifies and subdivisions are no longer
necessary. There is thus a lower bound to the scale of structure whose precise value depends on the
initial geometries. Nevertheless, from the scale at which the potential walls break down one can
show that structure formation stops at the latest when the discreteness scale of quantum geometry
is reached [60]. This can be seen as a consistency test of the theory since structure below the
discreteness could not be supported by quantum geometry.

We have thus a glimpse on the inhomogeneous situation with a complicated but consistent
approach to a general classical singularity. The methods involved, however, are not very robust
since the BKL scenario, which even classically is still at the level of a conjecture for the general
case [32, 168], would need to be available as an approximation to quantum geometry. For more
reliable results the methods need to be refined to take into account inhomogeneities properly.

4.11 Inhomogeneities

Allowing for inhomogeneities inevitably means to take a big step from finitely many degrees of
freedom to infinitely many ones. There is no straightforward way to cut down the number of degrees
of freedom to finitely many ones while being more general than in the homogeneous context. One
possibility would be to introduce a small-scale cut-off such that only finitely many wave modes
arise (e.g., through a lattice as is indeed done in some coherent state constructions [184]). This is
in fact expected to happen in a discrete framework such as quantum geometry, but would at this
stage of defining a model simply be introduced by hand.
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For the analysis of inhomogeneous situations there are several different approximation schemes:

e Use only isotropic quantum geometry and in particular its effective description, but couple
to inhomogeneous matter fields. Problems in this approach are that back-reaction effects are
ignored (which is also the case in most classical treatments) and that there is no direct way
how to check modifications used in particular for gradient terms of the matter Hamiltonian.
So far, this approach has led to a few indications of possible effects.

e Start with the full constraint operator, write it as the homogeneous one plus correction
terms from inhomogeneities, and derive effective classical equations. This approach is more
ambitious since contact to the full theory is realized. So far, there are not many results since
a suitable perturbation scheme has to be developed.

e There are inhomogeneous symmetric models, such as Einstein-Rosen waves or the spherically
symmetric one, which have infinitely many kinematical degrees of freedom but can be treated
explicitly. Also here, contact to the full theory is present through the symmetry reduction
procedure of Section 6. This procedure itself can be tested by studying those models between
homogeneous ones and the full theory, but results can also be used for physical applications
involving inhomogeneities. Many issues that are of importance in the full theory, such as the
anomaly problem, also arise here and can thus be studied more explicitly.

4.12 Inhomogeneous matter with isotropic quantum geometry

Inhomogeneous matter fields cannot be introduced directly to isotropic quantum geometry since
after the symmetry reduction there is no space manifold left for the fields to live on. There are then
two different routes to proceed: One can simply take the classical field Hamiltonian and introduce
effective modifications modeled on what happens to the isotropic Hamiltonian, or perform a mode
decomposition of the matter fields and just work with the space-independent amplitudes. The latter
is possible since the homogeneous geometry provides a background for the mode decomposition.

The basic question, for the example of a scalar field, then is how the metric coefficient in the
gradient term of Equation (12), E¢E?/\/|det E|, would be replaced effectively. For the other terms,
one can simply use the isotropic modification, which is taken directly from the quantization. For the
gradient term, however, one does not have a quantum expression in this context and a modification
can only be guessed. The problem arises since the inhomogeneous term involves inverse powers of
E, while in the isotropic context the coefficient just reduces to \/m , which would not be modified
at all. There is thus no obvious and unique way to find a suitable replacement.

A possible route would be to read off the modification from the full quantum Hamiltonian, or at
least from an inhomogeneous model, which requires a better knowledge of the reduction procedure.
Alternatively, one can take a more phenomenological point of view and study the effects of possible
replacements. If the robustness of these effects to changes in the replacements is known, one can
get a good picture of possible implications. So far, only initial steps have been taken and there is
no complete programme in this direction.

Another approximation of the inhomogeneous situation has been developed in [70] by patching
isotropic quantum geometries together to support an inhomogeneous matter field. This can be
used to study modified dispersion relations to the extent that the result agrees with preliminary
calculations performed in the full theory [115, 3, 4, 181, 182] even at a quantitative level. There is
thus further evidence that symmetric models and their approximations can provide reliable insights
into the full theory.
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4.13 Inhomogeneity: Perturbations

With a symmetric background, a mode decomposition is not only possible for matter fields but also
for geometry. The homogeneous modes can then be quantized as before, while higher modes are
coupled as perturbations implementing inhomogeneities [120]. As with matter Hamiltonians before,
one can then also deal with the gravitational part of the Hamiltonian constraint. In particular,
there are terms with inverse powers of the homogeneous fields which receive modifications upon
quantization. As with gradient terms in matter Hamiltonians, there are several options for those
modifications which can only be restricted by relating them to the full Hamiltonian. This would
require introducing the mode decomposition, analogously to symmetry conditions, at the quantum
level and writing the full constraint operator as the homogeneous one plus correction terms.

An additional complication compared to matter fields is that one is now dealing with infinitely
many coupled constraint equations since the lapse function N(z) is inhomogeneous, too. This
function can itself be decomposed into modes >, N,Y,(z), with harmonics Y, (x) according to
the symmetry, and each amplitude N, is varied independently giving rise to a separate constraint.
The main constraint arises from the homogeneous mode, which describes how inhomogeneities
affect the evolution of the homogeneous scale factors.

4.14 Inhomogeneous models

The full theory is complicated at several different levels of both conceptual and technical na-
ture. For instance, one has to deal with infinitely many degrees of freedom, most operators have
complicated actions, and interpreting solutions to all constraints in a geometrical manner can be
difficult. Most of these complications are avoided in homogeneous models, in particular when ef-
fective classical equations are employed. These equations use approximations of expectation values
of quantum geometrical operators which need to be known rather explicitly. The question then
arises whether one can still work at this level while relaxing the symmetry conditions and bringing
in more complications of the full theory.

Explicit calculations at a level similar to homogeneous models, at least for matrix elements
of individual operators, are possible in inhomogeneous models, too. In particular the spherically
symmetric model and cylindrically symmetric Einstein—Rosen waves are of this class, where the
symmetry or other conditions are strong enough to result in a simple volume operator. In the
spherically symmetric model, this simplification comes from the remaining isotropy subgroup iso-
morphic to U(1) in generic points, while the Einstein-Rosen model is simplified by polarization
conditions that play a role analogous to the diagonalization of homogeneous models. With these
models one obtains access to applications for black holes and gravitational waves, but also to
inhomogeneities in cosmology.

In spherical coordinates z, 1, ¢ a spherically symmetric spatial metric takes the form

ds? = quu(,t) dz® + gup(z,t) dQ?
with dQ? = d9? + sin? 9 dp?. This is related to densitized triad components by [196, 136]
|Ex| = Qo> (ELP)Q = Qzzqpp,

which are conjugate to the other basic variables given by the Ashtekar connection component A,
and the extrinsic curvature component K:

{Az(z), E*(y)} = 87Gvé(x,y),  {vK, (), E?(y)} = 167GYd(z,y).

Note that we use the Ashtekar connection for the inhomogeneous direction x but extrinsic curvature
for the homogeneous direction along symmetry orbits [75]. Connection and extrinsic curvature
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components for the (p-direction are related by Ai = Fi+72K i with the spin connection component

E’CC/
r,=- . 38
® 2E¥ ( )
Unlike in the full theory or homogeneous models, A, is not conjugate to a triad component but to
[52]

PY = \Ja(B#)? — A2(PPY?

with the momentum P? conjugate to a U(1)-gauge angle 3. This is a rather complicated function
of both triad and connection variables such that the volume V = 47 [ \/|E*|E¥dz would have a
rather complicated quantization. It would still be possible to compute the full volume spectrum,
but with the disadvantage that volume eigenstates would not be given by triad eigenstates such that
computations of many operators would be complicated [74]. This can be avoided by using extrinsic
curvature which is conjugate to the triad component [75]. Moreover, this is also in accordance
with a general scheme to construct Hamiltonian constraint operators for the full theory as well as
symmetric models [194, 42, 58].
The constraint operator in spherical symmetry is given by

H[N] = —(2G)~! /B dzN(z)|E®| 72 (K2E? + 2K, K,E”) + (1 - T2)E? + 2TLE")  (39)
accompanied by the diffeomorphism constraint
D[N"] = (2G)~! / N*(z)(2E¥K[, — K, E™). (40)
B

We have expressed this in terms of K, for simplicity, keeping in mind that as the basic variable
for quantization we will later use the connection component A,.

Since the Hamiltonian constraint contains the spin connection component I'y, given by (38),
which contains inverse powers of densitized triad components, one can expect effective classical
equations with modifications similar to the Bianchi IX model. However, the situation is now much
more complicated since we have a system constrained by many constraints with a non-Abelian
algebra. Simply replacing the inverse of E¥ with a bounded function as before will change the
constraint algebra and thus most likely lead to anomalies. It is currently open if a more refined
replacement can be done where not only the spin connection but also the extrinsic curvature terms
are modified. This issue has the potential to shed light on many questions related to the anomaly
issue. It is one of the cases where models between homogeneous ones, where the anomaly problem
trivializes, and the full theory are most helpful.

4.15 Inhomogeneity: Results

There are some results obtained for inhomogeneous systems. We have already discussed glimpses
from the BKL picture, which used loop results only for anisotropic models. Methods described in
this section have led to some preliminary insights into possible cosmological scenarios.

4.15.1 Matter gradient terms and small-a effects

When an inhomogeneous matter Hamiltonian is available it is possible to study its implications
on the cosmic microwave background with standard techniques. With modifications of densities
there are then different regimes since the part of the inflationary era responsible for the formation
of currently visible structure can be in the small-a or large-a region of the effective density.
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The small-a regime below the peak of effective densities has more dramatic effects since inflation
can here be provided by quantum geometry effects alone and the matter behavior changes to be
anti-frictional [45, 77]. Mode evolution in this regime has been investigated for a particular choice
of gradient term and using a power-law approximation for the effective density at small a, with the
result that there are characteristic signatures [130]. As in standard inflation models the spectrum
is nearly scale invariant, but its spectral index is slightly larger than one (blue tilt) as compared
to slightly smaller than one (red tilt) for single-field inflaton models. Since small scale factors at
early stages of inflation generate structure which today appears on the largest scales, this implies
that low multipoles of the power spectrum should have a blue tilt. The running of the spectral
index in this regime can also be computed but depends only weakly on ambiguity parameters.

The main parameter then is the duration of loop inflation. In the simplest scenario, one can
assume only one inflationary phase, which would require huge values for the ambiguity parameter
j. This is unnatural and would imply that the spectrum is blue on almost all scales, which is
in conflict with present observations. Thus, not only conceptual arguments but also cosmological
observations point to smaller values for j, which is quite remarkable.

In order to have sufficient inflation to make the universe big enough one then needs additional
stages provided by the behavior of matter fields. One still does not need an inflaton since now the
details of the expansion after the structure generating phase are less important. Any matter field
being driven away from its potential minimum during loop inflation and rolling down its potential
thereafter suffices. Depending on the complexity of the model there can be several such phases.

4.15.2 Matter gradient terms and large-a effects

At larger scale factors above the peak of effective densities there are only perturbative corrections
from loop effects. This has been investigated with the aim of finding trans-Planckian corrections to
the microwave background, also here with a particular gradient term. In this model, cancellations
have been observed that imply that corrections appear only at higher orders of the perturbation
series and are too weak to be observable [126].

A common problem of both analyses is that the robustness of the observed effects has not yet
been studied. This is in particular a pressing problem since one modification of the gradient term
has been chosen without further motivation. Moreover, the modifications in both examples were
different. Without a more direct derivation of the modifications from inhomogeneous models or
the full theory one can only rely on a robustness analysis to show that the effects can be trusted.
In particular the cancellation in the second example must be shown to be realized for a larger class
of modifications.

4.15.3 Non-inflationary structure formation

Given a modification of the gradient term, one obtains effective equations for the matter field,
which for a scalar results in a modified Klein—Gordon equation. After a mode decomposition, one
can then easily see that all the modes behave differently at small scales with the classical friction
replaced by anti-friction as in Section 4.5. Thus, not only the average value of the field is driven
away from its potential minimum but also higher modes are being excited. The coupled dynamics
of all the modes thus provides a scenario for structure formation, which does not rely on inflation
but on the anti-friction effect of loop cosmology.

Even though all modes experience this effect, they do not all see it in the same way. The
gradient term implies an additive contribution to the potential proportional to k2 for a mode of
wave number k, which also depends on the metric in a way determined by the gradient term
modification. For larger scales, the additional term is not essential and their amplitudes will
be pushed to similar magnitudes, suggesting scale invariance for them. The potential relevant
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for higher modes, however, becomes steeper and steeper such that they are less excited by anti-
friction and retain a small initial amplitude. In this way, the structure formation scenario provides
a dynamical mechanism for a small-scale cut-off, possibly realizing older expectations [165, 166].

4.15.4 Stability

As already noted, inhomogeneous matter Hamiltonians can be used to study the stability of cos-
mological equations in the sense that matter does not propagate faster than light. The modified
behavior of homogeneous modes has led to the suspicion that loop cosmology is not stable [94, 95]
since other cosmological models displaying super-inflation have this problem. A detailed analy-
sis of the loop equations, however, shows that the equations as they arise from modifications are
automatically stable. While the homogeneous modes display super-inflationary and anti-frictional
behavior, they are not relevant for matter propagation. Modes relevant for propagation, on the
other hand, are modified differently in such a manner that the total behavior is stable [129].
Most importantly, this is an example where an inhomogeneous matter Hamiltonian with its mod-
ifications must be used and the qualitative result of stability can be shown to be robust under
possible changes of the effective modification. This shows that reliable conclusions can be drawn
for important issues without a precise definition of the effective inhomogeneous behavior.

4.16 Summary

Loop cosmology is an effective description of quantum effects in cosmology, obtained in a framework
of a background independent and non-perturbative quantization. There is mainly one change
compared to classical equations coming from modified densities in matter Hamiltonians or also
anisotropy potentials. These modifications are non-perturbative as they contain inverse powers of
the Planck length and thus the gravitational constant, but also perturbative corrections arise from
curvature terms, which are now being studied.

The non-perturbative modification alone is responsible for a surprising variety of phenomena,
which all improve the behavior in classical cosmology. Nevertheless, the modification had not
been motivated by phenomenology but derived through the background independent quantization.
Details of its derivation in cosmological models and its technical origin will now be reviewed in
Section 5, before we come to a discussion of the link to the full theory in Section 6.
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5 Loop quantization of symmetric models

Analogies prove nothing, but they can make one feel more at home.
SIGMUND FREUD
Introductory Lectures on Psychoanalysis

In full loop quantum gravity, the quantum representation is crucial for the foundation of the
theory. The guiding theme there is background independence, which requires one to smear the
basic fields in a particular manner to holonomies and fluxes. In this section, we will see what
implications this has for composite operators and the physical effects they entail. We will base this
analysis on symmetric models in order to be able to perform explicit calculations.

Symmetries are usually introduced in order to simplify calculations or make them possible
in the first place. However, symmetries can sometimes also lead to complications in conceptual
questions if the additional structure they provide is not fully taken into account. In the present
context, it is important to realize that the action of a symmetry group on a space manifold provides
a partial background such that the situation is always slightly different from the full theory. If the
symmetry is strong, such as in homogeneous models, other representations such as the Wheeler—
DeWitt representation can be possible even though the fact that a background has been used
may not be obvious. While large scale physics is not very sensitive to the representation used,
it becomes very important on the smallest scales, which we have to take into account when the
singularity issue is considered.

Instead of looking only at one symmetric model, where one may have different possibilities to
choose the basic representation, one should thus keep the full view on different models as well as
the full theory. In fact, in loop quantum gravity it is possible to relate models and the full theory
such that symmetric states and basic operators, and thus the representation, can be derived from
the unique background independent representation of the full theory. We will describe this in detail
in Section 6, after having discussed the construction of quantum models in the present section.
Without making use of the relation to the full theory, one can construct models by analogy. This
means that quantization steps are modeled on those which are known to be crucial in the full
theory, which starts with the basic representation and continues to the Hamiltonian constraint
operator. One can then disentangle places where additional input as compared to the full theory
is needed and which implications it has.

5.1 Symmetries and backgrounds

It is impossible to introduce symmetries in a completely background independent manner. The
mathematical action of a symmetry group is defined by a mapping between abstract points, which
do not exist in a diffeomorphism invariant setting (if one, for instance, considers only equivalence
classes up to arbitrary diffeomorphisms).

More precisely, while the full theory has as background only a differentiable or analytic manifold
¥, a symmetric model has as background a symmetric manifold (X, S) consisting of a differentiable
or analytic manifold ¥ together with an action of a symmetry group S: ¥ — ¥. How strong the
additional structure is depends on the symmetry used. The strongest symmetry in gravitational
models is realized with spatial isotropy, which implies a unique spatial metric up to a scale factor.
The background is thus equivalent to a conformal space.

All constructions in a given model must take its symmetry into account since otherwise its
particular dynamics, for instance, could not be captured. The structure of models thus depends on
the different types of background realized for different symmetry groups. This can not only lead to
simplifications but also to conceptual differences, and it is always instructive to keep the complete
view on different models as well as the full theory. Since the loop formalism is general enough to
encompass all relevant models, there are many ways to compare and relate different systems. It is
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thus possible to observe characteristic features of (metric) background independence even in cases
where more structure is available.

5.2 Isotropy

TIsotropic models are described purely in terms of the scale factor a(t) such that there is only a
single kinematical degree of freedom. In connection variables, this is parameterized by the triad
component p conjugate to the connection component c.

If we restrict ourselves to invariant connections of a given form, it suffices to probe them with
only special holonomies. For an isotropic connection A = éA%w! (see Appendix B.2) we can
choose holonomies along one integral curve of a symmetry generator X;. They are of the form

h; = exp/AgX?n = cos 1 pc+ 207 sin L e (41)

where 1 depends on the parameter length of the curve and can be any real number (thanks to
homogeneity, path ordering is not necessary). Since knowing the values cos %  and sin % ue for all
1 uniquely determines the value of ¢, which is the only gauge invariant information contained in
the connection, these holonomies describe the configuration space of connections completely.

This illustrates how symmetric configurations allow one to simplify the constructions behind
the full theory. But it also shows which effects the presence of a partial background can have
on the formalism [15]. In the present case, the background enters through the left-invariant 1-
forms w’! defined on the spatial manifold whose influence is contained in the parameter p. All
information about the edge used to compute the holonomy is contained in this single parameter,
which leads to degeneracies compared to the full theory. Most importantly, one cannot distinguish
between the parameter length and the spin label of an edge: Taking a power of the holonomy in
a non-fundamental representation simply rescales p, which could just as well come from a longer
parameter length. That this is related to the presence of a background can be seen by looking at the
roles of edges and spin labels in the full theory. There, both concepts are independent and appear
very differently. While the embedding of an edge, including its parameter length, is removed by
diffeomorphism invariance, the spin label remains well-defined and is important for ambiguities of
operators. In the model, however, the full diffeomorphism invariance is not available such that
some information about edges remains in the theory and merges with the spin label. Issues like
that have to be taken into account when constructing operators in a model and comparing with
the full theory.

The functions appearing in holonomies for isotropic connections define the algebra of functions
on the classical configuration space which, together with fluxes, is to be represented on a Hilbert
space. This algebra does not contain arbitrary continuous functions of ¢ but only almost periodic
ones of the form [15]

10 =3 fuexpline/2) (42)

where the sum is over a countable subset of R. This is analogous to the full situation, reviewed in
Section 3.4, where matrix elements of holonomies define a special algebra of continuous functions
of connections. As in this case, the algebra can be represented as the set of all continuous functions
on a compact space, called its spectrum. This compactification can be imagined as being obtained
from enlarging the classical configuration space R by adding points, and thus more continuity
conditions, until only functions of the given algebra survive as continuous ones. A well-known
example is the one point compactification, which is the spectrum of the algebra of continuous
functions f for which lim, . f(z) = lim,_ f(z) exists. In this case, one just needs to add a
single point at infinity.
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In the present case, the procedure is more complicated and leads to the Bohr compactification
Rgonr, which contains R densely. It is very different from the one point compactification, as can be
seen from the fact that the only function which is continuous on both spaces is the zero function.
In contrast to the one point compactification, the Bohr compactification is an Abelian group, just
like R itself. Moreover, there is a one-to-one correspondence between irreducible representations
of R and irreducible representations of Rpony, which can also be used as the definition of the
Bohr compactification. Representations of Rpyp, are thus labeled by real numbers and given by
Pu: Rionr — C, ¢ — e¢. As with any compact group, there is a unique normalized Haar measure
du(c) given by

1 (T
[ r@dute = Jim gz [ feae (43)

Rpohr
where on the right hand side the Lebesgue measure on R is used.
The Haar measure defines the inner product for the Hilbert space L?(Rponr,dp(c)) of square
integrable functions on the quantum configuration space. As one can easily check, exponentials of
the form (c|p) = e*¢/? are normalized and orthogonal to each other for different s,

(Halp2) = O o (44)

which demonstrates that the Hilbert space is not separable.

Similarly to holonomies, one needs to consider fluxes only for special surfaces, and all informa-
tion is contained in the single number p. Since it is conjugate to c, it is quantized to a derivative
operator

d
~ . 2
p= —%wﬁp&, (45)
whose action
Pl = evloulp) =: pulu) (46)

on basis states |u) can easily be determined. In fact, the basis states are eigenstates of the flux
operator, which demonstrates that the flux spectrum is discrete (all eigenstates are normalizable).

This property is analogous to the full theory with its discrete flux spectra, and similarly it
implies discrete quantum geometry. We thus see that the discreteness survives the symmetry
reduction in this framework [37]. Similarly, the fact that only holonomies are represented in the
full theory but not connection components is realized in the model, too. In fact, we have so far
represented only exponentials of ¢, and one can see that these operators are not continuous in
the parameter p. Thus, an operator quantizing ¢ directly does not exist on the Hilbert space.
These properties are analogous to the full theory, but very different from the Wheeler—-DeWitt
quantization. In fact, the resulting representations in isotropic models are inequivalent. While the
representation is not of crucial importance when only small energies or large scales are involved
[18], it becomes essential at small scales which are in particular realized in cosmology.

5.3 Isotropy: Matter Hamiltonian

We now know how the basic quantities p and ¢ are quantized, and can use the operators to construct
more complicated ones. Of particular importance, also for cosmology, are matter Hamiltonians
where now not only the matter field but also geometry is quantized. For an isotropic geometry
and a scalar, this requires us to quantize [p|=3/2 for the kinetic term and |p|?/2 for the potential
term. The latter can be defined readily as |p|*>/2, but for the former we need an inverse power of
p. Since p has a discrete spectrum containing zero, a densely defined inverse does not exist.

At this point, one has to find an alternative route to the quantization of d(p) = [p|=3/2, or
else one could only conclude that there is no well-defined quantization of matter Hamiltonians as
a manifestation of the classical divergence. In the case of loop quantum cosmology it turns out,
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following a general scheme of the full theory [193], that one can reformulate the classical expression
in an equivalent way such that quantization becomes possible. One possibility is to write, similarly

o (13)

d(p) = (37r’yGZtr (T]h]{hI ,\/>})>

where we use holonomies of isotropic connections and the volume V = |p|3/2. In this expression we
can insert holonomies as multiplication operators and the volume operator, and turn the Poisson
bracket into a commutator. The result

—

§ _ 6
d(p) = (81'7_1652(5111 %cﬁ cos %c — cos %c V sin %c)) (47)

is not only a densely defined operator but even bounded, which one can easily read off from the
eigenvalues [41]

D) = (17> (Vrr ~ V7)) ) (48)

with V,, = |p,|*/? and p,, from (46).

Rewriting a classical expression in such a manner can always be done in many equivalent ways,
which in general all lead to different operators. In the case of [p|~3/2, we highlight the choice
of the representation in which to take the trace (understood as the fundamental representation
above) and the power of |p| in the Poisson bracket (vV = |p|>/* above). This freedom can be
parameterized by two ambiguity parameters j € %N for the representation and 0 < [ < 1 for the
power such that

8myGli(j+1)(2j + 1)

3 3/(2—21)
d(p) = ( Ztrj (rrhi{h; ", [p| })> :

Following the same procedure as above, we obtain eigenvalues [47, 50]

3/(2—-21)
— (1) 9
d . = k ! )
(p)],l 761231.7(1 + 1)(2j + 1) k;j |pﬂ+2k|

which, for larger j, can be approximated by (25), see also Figure 9. This provides the basis for
loop cosmology as described in Section 4.

Notice that operators for the scale factor, volume or their inverse powers do not refer to observ-
able quantities. It can thus be dangerous, though suggestive, to view their properties as possible
bounds on curvature. The importance of operators for inverse volume comes from the fact that
this appears in matter Hamiltonians, and thus the Hamiltonian constraint of gravity. Properties
of those operators such as their boundedness or unboundedness can then determine the dynamical
behavior (see, e.g., [54]).

5.4 Isotropy: Hamiltonian constraint

Dynamics is controlled by the Hamiltonian constraint, which classically gives the Friedmann equa-
tion. Since the classical expression (28) contains the connection component ¢, we have to use
holonomy operators. In the quantum algebra we only have almost periodic functions at our dis-
posal, which does not include polynomials such as c?. Quantum expressions can therefore only
coincide with the classical one in appropriate limits, Wthh in isotropic cosmology is realized for
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Figure 9: Discrete subset of eigenvalues of d(p) (left) for two choices of j (andl = %), together with
the approzimation d(p);; from Equation (25) and small-p power laws. The classical divergence at
small p, where the behavior is strongly modified, is cut off. The right panel shows the dependence
of the initial increase on .

small extrinsic curvature, i.e., small ¢ in the flat case. We thus need an almost periodic function
of ¢, which for small ¢ approaches ¢2. This can easily be found, e.g., the function sin®c. Again,
the procedure is not unique since there are many such possibilities, e.g., 6 2sin®d¢, and more
quantization ambiguities ensue. In contrast to the density | p|*3/ 2. where we also used holonomies
in the reformulation, the expressions are not equivalent to each other classically but only in the
small curvature regime. As we will discuss shortly, the resulting new terms have the interpretation
of higher order corrections to the classical Hamiltonian.

One can restrict the ambiguities to some degree by modeling the expression on that of the
full theory. This means that one does not simply replace ¢? by an almost periodic function, but
uses holonomies tracing out closed loops formed by symmetry generators [42, 46]. Moreover, the
procedure can be embedded in a general scheme that encompasses different models and the full
theory [194, 42, 58], further reducing ambiguities. In particular models with non-zero intrinsic
curvature on their symmetry orbits, such as the closed isotropic model, can then be included in
the construction. One issue to keep in mind is the fact that “holonomies” are treated differently
in models and the full theory. In the latter case, they are ordinary holonomies along edges, which
can be shrunk and then approximate connection components. In models, on the other hand,
one sometimes uses direct exponentials of connection components without integration. In such
a case, connection components are approximated only when they are small; if they are not, the
corresponding objects such as the Hamiltonian constraint receive infinitely many correction terms
of higher powers in curvature (similarly to effective actions). The difference between both ways of
dealing with holonomies can be understood in inhomogeneous models, where they are both realized
for different connection components.

In the flat case the construction is easiest, related to the Abelian nature of the symmetry group.
One can directly use the exponentials iy in (41), viewed as 3-dimensional holonomies along integral
curves, and mimic the full constraint where one follows a loop to get curvature components of the
connection A%. Respecting the symmetry, this can be done in the model with a square loop in two
independent directions I and J. This yields the product hrh Jhl_lhjl, which appears in a trace,
as in (15), together with a commutator h K[hl}l, ‘7] using the remaining direction K. The latter,
following the general scheme of the full theory reviewed in Section 3.6, quantizes the contribution
\/H to the constraint, instead of directly using the simpler \/m .
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Taking the trace one obtains a diagonal operator
sin(%éc)f/ cos(1dc) — cos(%éc)f/ sin(1dc)
in terms of the volume operator, as well as the multiplication operator
sin®(44c) cos®(26c) = sin®(dc).

In the triad representation where instead of working with functions (c|¢)) = ¥(c) one works with
the coefficients v, in an expansion |¢) = Z# ¥, |y, this operator is the square of a difference
operator. The constraint equation thus takes the form of a difference equation [46, 77, 15]

(Vu+55 - Vu+36>eikwu+45(¢> -2+ k27252)(vu+5 - Vufé)lﬁu(@

+ (VM*35 - VH755)eiik¢u*45(¢) = _HSTWG'Y?"S?’gl%ﬁmatter(N)?pu(@ (49)

for the wave function 1, which can be viewed as an evolution equation in internal time p. (Note
that this equation is not valid for ¥ = —1 since the derivation via a Hamiltonian formulation is
not available in this case.) Thus, discrete spatial geometry implies a discrete internal time [43].
The equation above results in the most direct way from a non-symmetric constraint operator with
gravitational part acting as

- 3

Hlp) = W(VMH — Vi) (e ™|+ 46) — (2+ K767 |p) + ™" |p — 45)).
P

One can symmetrize this operator and obtain a difference equation with different coefficients, which
we do here after multiplying the operator with sgn p for reasons that will be discussed in the context
of singularities in Section 5.15. The resulting difference equation is

(1A V(1 4 48) + |AsV (1)) e* Y ppa5(0) — 2(2 + E27%02) | AsV | (1)1, ()

+ (1AV (1~ 46) + 1BV s 10(6) = — o G786 Haser ()0(9)  (50)
where |As V() := sgn(u)(Virs — Vi-s) = Vs — Visl.

Since sin ¢|p) = —3i(|u+2) —|u—2)), the difference equation is of higher order, even formulated
on an uncountable set, and thus has many independent solutions. Most of them, however, oscillate
on small scales, i.e., between p and g + md with small integer m. Others oscillate only on larger
scales and can be viewed as approximating continuum solutions. The behavior of all the solutions
leads to possibilities for selection criteria of different versions of the constraint since there are
quantization choices. Most importantly, one chooses the routing of edges to construct the square
holonomy, again the spin of a representation to take the trace [116, 201], and factor ordering choices
between quantizations of ¢? and \/H . All these choices also appear in the full theory such that
one can draw conclusions for preferred cases there.

When the symmetry group is not Abelian and there is non-zero intrinsic curvature, the con-
struction is more complicated. For non-Abelian symmetry groups integral curves as before do
not form a closed loop and one needs a correction term related to intrinsic curvature components
[46, 62]. Moreover, the classical regime is not as straightforward to specify since connection compo-
nents are not necessarily small when there is intrinsic curvature. A general scheme encompassing
intrinsic curvature, other symmetric models and the full theory will be discussed in Section 5.14.

5.5 Semiclassical limit and correction terms

When replacing ¢ by holonomies we have modified the constraint as a function on the classical
phase space. This is necessary since otherwise the function cannot be quantized, but is different
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from the quantization of densities because now the replacements are not equivalent to the original
constraint classically. Also the limit lims_,o 62 sin? d¢, which would give the classical result, does
not exist at the operator level.

This situation is different from the full theory, again related to the presence of a partial back-
ground [15]. There, the parameter length of edges used to construct appropriate loops is irrelevant
and thus can shrink to zero. In the model, however, changing the edge length with respect to
the background does change the operator and the limit does not exist. Intuitively, this can be
understood as follows: The full constraint operator (15) is a vertex sum obtained after introducing
a discretization of space used to choose loops « ;. This classical regularization sums over all tetra-
hedra in the discretization, whose number diverges in the limit where the discretization size shrinks
to zero. In the quantization, however, almost all these contributions vanish since a tetrahedron
must contain a vertex of a state in order to contribute non-trivially. The result is independent of
the discretization size once it is fine enough, and the limit can thus be taken trivially.

In a homogeneous model, on the other hand, contributions from different tetrahedra of the
triangulation must be identical owing to homogeneity. The coordinate size of tetrahedra drops out
of the construction in the full background independent quantization, as emphasized in Section 3.6,
which is part of the reason for the discretization independence. In a homogeneous configuration
the number of contributions thus increases in the limit, but their size does not change. This results
in an ill-defined limit as we have already seen within the model itself.

The difference between models and the full theory is thus only a consequence of the symmetry
and not of different approaches. This will also become clear later in inhomogeneous models where
one obtains a mixture between the two situations. Moreover, in the full theory one has a situation
similar to symmetric models if one does not only look at the operator limit when the regularization
is removed but also checks the classical limit on semiclassical states. In homogeneous models, the
expression in terms of holonomies implies corrections to the classical constraint when curvature
becomes larger. This is in analogy to other quantum field theories where effective actions generally
have higher curvature terms. In the full theory, those correction terms can be seen when one com-
putes expectation values of the Hamiltonian constraint in semiclassical states peaked at classical
configurations for the connection and triad. When this classical configuration becomes small in
volume or large in curvature, correction terms to the classical constraint arise. In this case, the
semiclassical state provides the background with respect to which these corrections appear. In
a homogeneous model, the symmetry already provides a partial background such that correction
terms can be noticed already for the constraint operator itself.

5.5.1 WKB approximation

There are different procedures to make contact between the difference equation and classical con-
straints. The most straightforward way is to expand the difference operators in a Taylor series,
assuming that the wave function is sufficiently smooth. On large scales, this indeed results in the
Wheeler-DeWitt equation as a continuum limit in a particular ordering [44]. From then on, one
can use the WKB approximation or Wigner functions as usually.

That this is possible may be surprising because as just discussed the continuum limit § — 0
does not exist for the constraint operator. And indeed, the limit of the constraint equation, i.e., the
operator applied to a wave function, does not exist in general. Even for a wave function the limit
6 — 0 does not exist in general since some solutions are sensitive to the discreteness and do not
have a continuum limit at all. When performing the Taylor expansion we already assumed certain
properties of the wave function such that the continuum limit does exist. This then reduces the
number of independent wave functions to that present in the Wheeler-DeWitt framework, subject
to the Wheeler-DeWitt equation. That this is possible demonstrates that the constraint in terms
of holonomies does not have problems with the classical limit.
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The Wheeler-DeWitt equation results at leading order, and in addition higher order terms
arise in an expansion of difference operators in terms of § or . Similarly, after the WKB or other
semiclassical approximation there are correction terms to the classical constraint in terms of 7 as
well as i [99].

This procedure is intuitive, but it is not suitable for inhomogeneous models where the Wheeler—
DeWitt representation becomes ill-defined. One can evade this by performing the continuum and
semiclassical limit together. This again leads to corrections in terms of v as well as ki, which are
mainly of the following form [29]: Matter Hamiltonians receive corrections through the modified
density d(p), and there are similar terms in the gravitational part containing \/m These are
purely from triad coefficients, and similarly connection components lead to higher order corrections
as well as additional contributions summarized in a quantum geometry potential. A possible
interpretation of this potential in analogy to the Casimir effect has been put forward in [128]. A
related procedure to extract semiclassical properties from the difference operator, based on the
Bohmian interpretation of quantum mechanics, has been discussed in [185].

5.5.2 Effective formulation

In general, one does not only expect higher order corrections for a gravitational action but also
higher derivative terms. The situation is then qualitatively different since not only correction terms
to a given equation arise, but also new degrees of freedom coming from higher derivatives being
independent of lower ones. In a WKB approximation, this could be introduced by parameterizing
the amplitude of the wave function in a suitable way, but it has not been worked out yet. An
alternative approach makes use of a geometrical formulation of quantum mechanics [26], which
not only provides a geometrical picture of the classical limit but also a clear-cut procedure for
computing effective Hamiltonians in analogy to effective actions [73].

Instead of using linear operators on a Hilbert space, one can formulate quantum mechanics on
an infinite-dimensional phase space. This space is directly obtained from the Hilbert space where
the inner product defines a metric as well as a symplectic form on its linear vector space (which in
this way even becomes Kéhler). This formulation brings quantum mechanics conceptually much
closer to classical physics, which also facilitates a comparison in a semiclassical analysis.

We thus obtain a quantum phase space with infinitely many degrees of freedom, together with
a flow defined by the Schrédinger equation. Operators become functions on this phase space
through expectation values. Coordinates can be chosen by suitable parameterizations of a general
wave function, in particular using the expectation values ¢ = (§) and p = (p) together with
uncertainties and higher moments. The projection 7: H — R? ¢ — ((1|q|), (¢|p[b)) defines the
quantum phase space as a fiber bundle over the classical phase space with infinite-dimensional
fibers. Sections of this bundle can be defined by embedding the classical phase space into the
quantum phase space by means of suitable semiclassical states.

For a harmonic oscillator this embedding can be done by coherent states which are preserved by
the quantum evolution. This means that the quantum flow is tangential to the embedding of the
classical phase space such that it agrees with the classical flow. The harmonic oscillator thus does
not receive quantum corrections as is well known from effective actions for free field theories. Other
systems, however, behave in a more complicated manner where in general states spread. This means
that additional coordinates of the quantum phase space are dynamical and may become excited. If
this is the case, the quantum flow differs from the classical flow and an effective Hamiltonian arises
with correction terms that can be computed systematically. This effective Hamiltonian is given by
the expectation value <I:I ) in approximate coherent states [16, 206, 188]. In these calculations, one
can include higher degrees of freedom along the fibers, which, through the effective equations of
motion, can be related to higher derivatives or higher curvature in the case of gravity.

For a constrained system, such as gravity, one has to compute the expectation value of the
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Hamiltonian constraint, i.e., first go to the classical picture and then solve equations of motion.
Otherwise, there would simply be no effective equations left after the constraints would already
have been solved. This is the same procedure as in standard effective actions, which one can
also formulate in a constrained manner if one chooses to parameterize time. Indeed, also for
non-constrained systems agreement between the geometrical way to derive effective equations and
standard path integral methods has been shown for perturbations around a harmonic oscillator
[73].

5.6 Homogeneity

A Hamiltonian formulation is available for all homogeneous models of Bianchi class A [111], which
have structure constants C, fulfilling C%; = 0. The structure constants also determine left-
I (see
Appendix B.1) where all freedom is contained in the z-independent qg} A homogeneous densitized
triad can be written in a dual form with coefficients p! conjugate to g{)} As in isotropic models,
one absorbs powers of the coordinate volume to obtain variables ¢% and p!.

The kinematics is the same for all class A models, except possibly for slight differences in the
diffeomorphism constraint [25, 36]. Connection components define a distinguished triple of su(2)
elements (5?7’1', one for each independent direction of space. Holonomies in those directions are then

invariant 1-forms w’ in terms of which one can write a homogeneous connection as A% = ¢%w

obtained as h(I’”) = exp(ur¢ir;) € SU(2) with parameters pu; for the edge lengths. Cylindrical func-
tions depend on those holonomies, i.e., are countable superpositions of terms f(hg‘“), hé’m, hé“s)).

A basis can be written down as spin network states
R R 1)) = gy (W) 3 i (B ™)) B2 g (™)) g BB B2

where the matrix K specifies how the representation matrices are contracted to a gauge invariant
function of ¢%. There are uncountably many such states for different iy and thus the Hilbert space
is non-separable. In contrast to isotropic models, the general homogeneous theory is genuinely
SU(2) and therefore not much simpler than the full theory for individual calculations.

As a consequence of homogeneity we observe the same degeneracy as in isotropic models where
both spin and edge length appear similarly as parameters. Spins are important to specify the
contraction K and thus appear, e.g., in the volume spectrum. For this one needs to know the
spins, and it is not sufficient to consider only products j;d;. On the other hand, there is still
a degeneracy of spin and edge length and keeping both j; and J; independent leaves too many
parameters. It is therefore more difficult to determine what the analog of the Bohr compactification
is in this case.

5.7 Diagonalization

The situation simplifies if one considers diagonal models, which is usually also done in classical
considerations since it does not lead to much loss of information. In a metric formulation, one
requires the metric and its time derivative to be diagonal, which is equivalent to a homogeneous
densitized triad p/ = p)A! and connection ¢} = c(yAy with real numbers ¢; and p’ (where
coordinate volume has been absorbed as described in Appendix B.1) which are conjugate to each
other, {c;,p’} = 8myGd{, and internal directions A% as in isotropic models [48]. In fact, the
kinematics becomes similar to isotropic models, except that there are now three independent
copies. The reason for the simplification is that we are able to separate off the gauge degrees
of freedom in A% from gauge invariant variables ¢; and p! (except for remaining discrete gauge
transformations changing the signs of two of the p! and c; together). In a general homogenous
connection, gauge-dependent and gauge-invariant parameters are mixed together in ¢, which both
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react differently to a change in py. This makes it more difficult to discuss the structure of relevant
function spaces without assuming diagonalization.

As mentioned, the variables p’ and c; are not completely gauge invariant since a gauge trans-
formation can flip the sign of two components p’ and ¢; while keeping the third fixed. There is
thus a discrete gauge group left, and only the total sign sgn(p'p?p?) is gauge invariant in addition
to the absolute values.

Quantization can now proceed simply by using as Hilbert space the triple product of the
isotropic Hilbert space, given by square integrable functions on the Bohr compactification of the
real line. This results in states |¢) = > Wy s |15 12, p3) expanded in an orthonormal
basis

M1, 42,13

<017 Ca, C3|M1’N2,M3> = ei(mcl+“2c2+“3cs)/2-

Gauge invariance under discrete gauge transformations requires ¥, i, ., t0 be symmetric under
a flip of two signs in ;. Without loss of generality one can thus assume that 1 is defined for all
real p3 but only non-negative pq and po.

Densitized triad components are quantized by

) 1
P, pios p3) = 5”17€%|M17M27ﬂ3>a

which directly give the volume operator V = /[p'p2p3| with spectrum

VH17H27M3 = (%’%%)3/2 ‘//'1/1'2/13|~

Moreover, after dividing out the remaining discrete gauge freedom the only independent sign in
triad components is given by the orientation sgn(p'p?p?), which again leads to a doubling of the
metric minisuperspace with a degenerate subset in the interior, where one of the p’ vanishes.

5.8 Homogeneity: Dynamics

The Hamiltonian constraint can be constructed in the standard manner and its matrix elements
can be computed explicitly thanks to the simple volume spectrum. There are holonomy operators
for all three directions, and so in the triad representation the constraint equation becomes a partial
difference equation for v, ., ., in three independent variables. Its (lengthy) form can be found
in [48] for the Bianchi I model and in [62] for all other class A models.

Simpler cases arise in so-called locally rotationally symmetric (LRS) models, where a non-trivial
isotropy subgroup is assumed. Here, only two independent parameters p and v remain, where only
one, e.g., v can take both signs if discrete gauge freedom is fixed, and the vacuum difference
equation is, e.g., for Bianchi I,

26M(’¢u+26,y+26 - wu—267u+25)
(V40 = Vv = 68]) (1 + 46)Ppugas — 208000 + (1 — 46)u—as,)

—26\/ v — 26| (Y25, —25 — Vu—25.0—25)
=0 (51)

from the non-symmetric constraint and

26(+/|v + 28] + \/ﬂ)(¢u+26,u+25 — Yp—26,04265)
+(VIv + 8] = Vv =3]) (1 + 20)ps2s0 — b + (1 — 20)Y—25.)

_25( \% |V - 25| + |V|)(wu+26,y—26 - 7/’u—26,u—26)
=0 (52)
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from the symmetric version (see also [14]). This leads to a reduction between fully anisotropic and
isotropic models with only two independent variables, and provides a class of interesting systems
to analyze effects of anisotropies.

5.9 Inhomogeneous models

Homogeneous models provide a rich generalization of isotropic ones, but inhomogeneities lead to
stronger qualitative differences. To start with, at least at the kinematical level one has infinitely
many degrees of freedom and is thus always dealing with field theories. Studying field theoretical
implications does not require going immediately to the full theory since there are many inhomo-
geneous models of physical interest.

We will describe some 1-dimensional models with one inhomogeneous coordinate = and two
others parameterizing symmetry orbits. A general connection is then of the form (with coordinate
differentials w, and w, depending on the symmetry)

A=Ay(x)Az(x)dz + Ay(z)Ay(2)wy + A, (x)A,(2)w, + field independent terms (53)

with three real functions A;(z) and three internal directions Ar(z) normalized to tr(A?) = —1,
which in general are independent of each other. The situation in a given point x is thus similar
to general homogeneous models with nine free parameters. Correspondingly, there are not many
simplifications from this general form, and one needs analogs of the diagonalization employed for
homogeneous models. What is required mathematically for simplifications to occur is a connection
with internally perpendicular components, i.e., tr(A;Ay) = —%5U in each point. This arises in

different physical situations.

5.10 Einstein—Rosen waves

One class of 1-dimensional models is given by cylindrically symmetric gravitational waves, with
connections and triads

A=A (x)rsde + (A1 (x)11 + Ax(z)2) dz + (As(x)m + Ag(2)T2) de, (54)
E= E’”(m)m% + (B (x)m + E%x)m)% + (B3(x)m + E4(w)72)% (55)

in cylindrical coordinates. This form is more special than (53), but still not simple enough for
arbitrary A;, Ay, Az and A4. Einstein—Rosen waves [109, 34] are a special example of cylindrical
waves subject to the polarization condition A A4 + A1 A3 = 0, and analogously for triad compo-
nents. This is just what is needed to restrict the model to internally perpendicular connection
components and is thus analogous to diagonalization in a homogeneous model.

5.10.1 Canonical variables

A difference to homogeneous models, however, is that the internal directions of a connection and
a triad do not need to be identical, which in homogeneous models with internal directions A% is
the case as a consequence of the Gauss constraint €/ kqﬁ%pi = 0. With inhomogeneous fields, now,
the Gauss constraint reads

E* 4+ AJE? — AyB' + AsE* — A,E® =0 (56)

or, after splitting off norms and internal directions

A, =/ A3 + A%, Ay =/ A3+ A3 (57)

AT + AT Azt + Ayt
A._ AT 272 A 43T 4T2
AL = A ==

- A, A,
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and analogously E#, E¥, A% and A%,
E* 4+ (ALE* + AL E?)sina =0 (59)

with sina := —2tr(AAA%73). If E® is not constant, o cannot be zero and thus connections and
triads have different internal directions.

As a consequence, E* is not conjugate to A,, anymore, and instead the momentum of A,
is E*cosa [52]. This seems to make a quantization more complicated since the momenta will
be quantized to simple flux operators, but do not directly determine the geometry such as the
volume V = 4x [ dz+/|E*E*E¥|. For this, one would need to know the angle o which depends on
both connections and triads. Moreover, it would not be obvious how to obtain a discrete volume
spectrum since then volume does not depend only on fluxes.

It turns out that there is a simple canonical transformation, which allows one to work with
canonical variables E# and E¥ playing the role of momenta of A, cosa and A, cosa [75]. This
seems to be undesirable, too, since now the connection variables are modified which play an
important role for holonomies. That these canonical variables are very natural, however, follows
after one considers the structure of spin connections and extrinsic curvature tensors in this model.
The new canonical variables are then simply given by A,cosa = vK,, A, cosa = 7K, ie.,
proportional to extrinsic curvature components. Thus, in the inhomogeneous model we simply
replace connection components with extrinsic curvature in homogeneous directions (note that A,
remains unchanged) while momenta remain elementary triad components. This is part of a broader
scheme which is also important for the Hamiltonian constraint operator (Section 5.14).

5.10.2 Representation

With the polarization condition the kinematics of the quantum theory simplifies. Relevant holonomies
are given by he(A) = exp(3i [, Ay (z)dz) along edges in the 1-dimensional manifold and

hy(A) = exp(iyv, K. (v)), h§ (A) = exp(iype K, (v))

in vertices v with real u,, v, > 0. Cylindrical functions depend on finitely many of those holonomies,
whose edges and vertices form a graph in the 1-dimensional manifold. Flux operators, i.e., quan-
tized triad components, act simply by

- VB Ket (@) + ke (@)
B (@) Ty = L P SC (60)
[ 5%
E* Ty k= -—— Vol ko, (61)
7 dm vET
- 03
/ BTy o = A Z/‘ng’kﬁu (62)
7 veL

on a spin network state

Tyin(A) = [T orc(he) TT o (Vo (0)p0, (VK= (0)) pic, (B(0))

ecg veV (g)
- ( Lik, [ Au(2) dm) [ emoke® k@i, (63)
e€g ¢ veV(g)

which also depend on the gauge angle 8 determining the internal direction of AF. If we solve
the Gauss constraint at the quantum level, the labels k, will be such that a gauge invariant spin
network only depends on the gauge invariant combination A, + 3’
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Since triad components have simple quantizations, one can directly combine them to get the
volume operator and its spectrum

Vi TR 73/26% Z \/,uvl/v|ke+(u) + ke*(v)|- (64)
My 4ﬁ -

The labels u, and v, are always non-negative, and the local orientation is given through the sign

of edge labels k..

Commutators between holonomies and the volume operator will technically be similar to homo-
geneous models, except that there are more possibilities to combine different edges. Accordingly,
one can easily compute all matrix elements of composite operators such as the Hamiltonian con-
straint. The result is only more cumbersome because there are more terms to keep track of. Again
as in diagonal homogeneous cases, the triad representation exists and one can formulate the con-
straint equation there. Now, however, one has infinitely many coupled difference equations for the
wave function since the lapse function is inhomogeneous (one obtains one difference equation for
each vertex).

There are obvious differences to cases considered previously owing to inhomogeneity. For in-
stance, each edge label can take positive or negative values, or go through zero during evolution
corresponding to the fact that a spatial slice does not need to intersect the classical singularity
everywhere. Also the structure of coefficients of the difference equations, though qualitatively
similar to homogeneous models, is changed crucially in inhomogeneous models, mainly due to the
volume eigenvalues (64). Now, k.+, say, and thus E* can be zero without volume eigenvalues in
neighboring vertices having zero volume.

5.11 Spherical symmetry

For spherically symmetric models, a connection has the form (Appendix B.3)
A=A (x)r3dr + (A1 ()1 + Ax(z)2) dd + (A1 (2)m2 — Ag(x)m) sinddp + 15cosdde  (65)

whose field-dependent terms automatically have perpendicular internal directions. In this case, it
is not diagonalization as in the polarization condition for Einstein—Rosen waves but a non-trivial
isotropy subgroup which leads to this property. The kinematical quantization is then simplified as
discussed before, with the only difference being that there is only one type of vertex holonomy

hy(A) = exp(iyp, Ky (v))

as a consequence of a non-trivial isotropy subgroup. The Hamiltonian constraint can again be
computed explicitly [75].

Spherically symmetric models are usually used for applications to non-rotating black holes, but
they can also be useful for cosmological purposes. They are particularly interesting as models for
the evolution of inhomogeneities as perturbations, which can be applied to gravitational collapse
but also cosmology. In such a context one often reduces the spherically symmetric configuration
even further by requiring a spatial metric

ds? = que(z,t) da?® + Qo (T,1) d0?,

where gz, is related to gup by Oz1/@uz = +/Gpp- One example for such a metric is the spatial part
of a flat Friedmann-Robertson-Walker space-time, where gy, (z,t) = z?a(t)?. This allows one to
study perturbations around a homogeneous space-time, which can also be done at the quantum
level.
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5.12 Loop inspired quantum cosmology

The constructions described so far in this section follow all the steps in the full theory as closely
as possible. Most importantly, one obtains quantum representations inequivalent to those used
in a Wheeler-DeWitt quantization, which results in many further implications. This has inspired
investigations where not all the steps of loop quantum gravity are followed, but only the same type
of representation, i.e., the Bohr Hilbert space in an isotropic model, is used. Other constructions,
based on ADM rather than Ashtekar variables, are then done in the most straightforward way
rather than a way suggested by the full theory [131].

In isotropic models the results are similar, but already here one can see conceptual differences.
Since the model is based on ADM variables, in particular using the metric and not triads, it is
not clear what the additional sign factor sgn(u), which is then introduced by hand, means geo-
metrically. In loop quantum cosmology it arose naturally as orientation of triads, even before its
role in removing the classical singularity, to be discussed in Section 5.15, had been noticed. (The
necessity of having both signs available is also reinforced independently by kinematical consistency
considerations in the full theory [117].) In homogeneous models the situation is even more compli-
cated since sign factors are still introduced by hand, but not all of them are removed by discrete
gauge transformations as in Section 5.7 (see [158] as opposed to [14]). Those models are useful to
illuminate possible effects, but they also demonstrate how new ambiguities, even with conceptual
implications, arise if guidance from a full theory is lost.

In particular the internal time dynamics is more ambiguous in those models and thus not
usually considered. There are then only arguments that the singularity could be avoided through
boundedness of relevant operators, but those statements are not generic in anisotropic models
[62] or even the full theory [85]. Moreover, even if all curvature quantities could be shown to be
bounded, the evolution could still stop (as happens classically where not any singularity is also a
curvature singularity).

5.13 Dynamics

Because irrational numbers are always the result of calculations, never the result of
direct measurement, might it not be possible in physics to abandon irrational numbers
altogether and work only with the rational numbers? That is certainly possible, but it
would be a revolutionary change. ...

At some future time, when much more is known about space and time and the other
magnitudes of physics, we may find that all of them are discrete.
RUDOLF CARNAP
An Introduction to the Philosophy of Science

So far we have mainly described the kinematical construction of symmetric models in loop
quantum gravity up to the point where the Hamiltonian constraint appears. Since many dynamical
issues in different models appear in a similar fashion, we discuss them in this section with a common
background. The main feature is that dynamics is formulated by a difference equation that by itself,
compared to the usual appearance of differential equations, implies new properties of evolution.
Depending on the model there are different classes, which even within a given model are subject
to quantization choices. Yet, since there is a common construction procedure many characteristic
features are very general.

Classically, curvature encodes the dynamics of geometry and does so in quantum gravity, too.
On the other hand, quantum geometry is most intuitively understood in eigenstates of geometry,
e.g., a triad representation if it exists, in which curvature is unsharp. Anyway, only solutions to the
Hamiltonian constraint are relevant, which in general are peaked neither on spatial geometry nor
on extrinsic curvature. The role of curvature thus has a different, less direct meaning in quantum
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gravity. Still, it is instructive to quantize classical expressions for curvature in special situations,
such as a~? in isotropy. Since the resulting operator is bounded, it has played an influential role
on the development of statements regarding the fate of classical singularities.

However, one has to keep in mind that isotropy is a very special case, as emphasized before,
and already anisotropic models shed quite a different light on curvature quantities. Isotropy is
special because there is only one classical spatial length scale given by the scale factor a, such that
intrinsic curvature can only be a negative power such as a2 just for dimensional reasons. That
the modification is not obvious by quantization in the model is illustrated by comparing the intrin-
sic curvature term ka~2, which remains unmodified and thus unbounded in the purely isotropic
quantization, with the term coming from a matter Hamiltonian where the classical divergence of
a3 is cut off.

In an anisotropic model we do have different classical scales and thus dimensionally also terms
like ayaq 3 are possible. It is then not automatic that the quantization is bounded even if as 3 were
to be bounded. As an example for such quantities consider the spatial curvature scalar given by
W (pt,p?,p®)/(p'p?p?) with W in (37) through the spin connection components. When quantized
and then reduced to isotropy, one does obtain a cut-off to the intrinsic curvature term ka=2 as
mentioned in Section 4.9, but the anisotropic expression remains unbounded on minisuperspace.
The limit to vanishing triad components is direction dependent and the isotropic case picks out
a vanishing limit. However, in general this is not the limit taken by the dynamical trajectories.
Similarly, in the full theory one can show that inverse volume operators are not bounded even,
in contrast to anisotropic models, on states where the volume eigenvalue vanishes [85]. However,
this is difficult to interpret since nothing is known about its relevance for dynamics, and even the
geometrical role of spin labels, and thus of the configurations considered, is unclear.

It is then quantum dynamics that is necessary to see what properties are relevant and how
degenerate configurations are approached. This should allow one to check if the classical boundary
a finite distance away is removed in quantum gravity. This can only happen if quantum gravity
provides candidates for a region beyond the classical singularity, and means to probe how to evolve
there. The most crucial aim is to prevent incompleteness of space-time solutions or their quantum
replacements. Even if curvature would be finite, by itself it would not be enough since one could
not tell if the singularity persists as incompleteness. Only a demonstration of continuing evolution
can ultimately show that singularities are absent.

5.14 Dynamics: General construction

Not all steps in the construction of the full constraint can be taken over immediately to a model
since symmetry requirements have to be respected. It is thus important to have a more general
construction scheme that shows how generic different steps are, and whether or not crucial input
in a given symmetric situation is needed.

We have already observed one such issue, which is the appearance of holonomies but also simple
exponentials of connection components without integration. This is a consequence of different
transformation properties of different connection components in a reduced context. Components
along remaining inhomogeneous directions, such as A, for Einstein—Rosen waves, play the role of
connection components in the model, giving rise to ordinary holonomies. Other components, such
as A, and A, in Einstein-Rosen waves or all components in homogeneous models, transform as
scalars and thus only appear in exponentials without integration. In the overall picture, we have the
full theory with only holonomies, homogeneous models with only exponentials, and inhomogeneous
models in between where both holonomies and exponentials appear.

Another crucial issue is that of intrinsic curvature encoded in the spin connection. In the
full theory, the spin connection does not have any covariant meaning and in fact can locally be
made to vanish. In symmetric models, however, some spin connection components can become
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covariantly well-defined since not all coordinate transformations are allowed within a model. In
isotropic models, for instance, the spin connection is simply given by a constant proportional to
the curvature parameter. Of particular importance is the spin connection when one considers
semiclassical regimes because intrinsic curvature does not need to become small there in contrast
to extrinsic curvature. Since the Ashtekar connection mixes the spin connection and extrinsic
curvature, its semiclassical properties can be rather complicated in symmetric models.

The full constraint is based on holonomies around closed loops in order to approximate Ashtekar
curvature components when the loop becomes small in a continuum limit. For homogeneous direc-
tions, however, one cannot shrink the loop and instead works with exponentials of the components.
One thus approximates the classical components only when arguments of the exponential are small.
If these arguments were always connection components, one would not obtain the right semiclas-
sical properties because those components can remain large. In models one thus has to base the
construction for homogeneous directions on extrinsic curvature components, i.e., subtract off the
spin connection from the Ashtekar connection. For inhomogeneous directions, on the other hand,
this is not possible since one needs a connection in order to define a holonomy.

At first sight this procedure seems rather ad hoc and even goes half a step back to ADM
variables since extrinsic curvature components are used. However, there are several places where
this procedure turns out to be necessary for a variety of independent reasons. We have already
seen in Section 5.10 that inhomogeneous models can lead to a complicated volume operator when
one insists on using all Ashtekar connection components. When one allows for extrinsic curvature
components in the way just described, on the other hand, the volume operator becomes straight-
forward. This appeared after performing a canonical transformation, which rests non-trivially on
the form of inhomogeneous spin connections and extrinsic curvature tensors.

Moreover, in addition to the semiclassical limit used above as justification one also has to discuss
local stability of the resulting evolution equation [59]: Since higher order difference equations have
additional solutions, one must ensure that they do not become dominant in order not to spoil the
continuum limit. This is satisfied with the above construction, while it is generically violated if
one were to use only connection components.

There is thus a common construction scheme available based on holonomies and exponentials.
As already discussed, this is responsible for correction terms in a continuum limit, but also gives
rise to the constraint equation being a difference equation in a triad representation, whenever it
exists. In homogeneous models the structure of the resulting difference equation is clear, but there
are different open possibilities in inhomogeneous models. This is intimately related to the issue of
anomalies, which also appears only in inhomogeneous models.

With a fixed choice, one has to solve a set of coupled difference equations for a wave function on
superspace. The basic question then always is what kind of initial or boundary value problem has to
be used in order to ensure the existence of solutions with suitable properties, e.g., in a semiclassical
regime. Once this is specified one can already discuss the singularity problem since one needs to
find out if initial conditions in one semiclassical regime together with boundary conditions away
from classical singularities suffice for a unique solution on all of superspace. A secondary question
is how this equation can be interpreted as evolution equation for the wave function in an internal
time. This is not strictly necessary and can be complicated owing to the problem of time in general.
Nevertheless, when available, an evolution interpretation can be helpful for interpretations.

5.15 Singularities

1l n’est rien de plus précieux que le temps, puisque c’est le prix de l’éternité.

(There is nothing more precious than time, for it is the price of eternity.)
Louis BOURDALOUE
Sermon sur la perte de temps
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In the classical situation, we always have trajectories on superspace running into singular
submanifolds where some or all densitized triad components vanish. In semiclassical regimes one
can think of physical solutions as wave packets following these trajectories in internal time, but at
smaller triad components spreading and deformations from a Gaussian become stronger. Moreover,
discreteness becomes essential and properties of difference equations need to be taken into account
in order to see what is happening at the singular submanifolds.

The simplest situation is given by isotropic models where superspace is one dimensional with
coordinate p. Minisuperspace is thus disconnected classically with two sides separated by the
classical singularity at p = 0. At this point, classical energy densities diverge and there is no
well-defined initial value problem to evolve further. (Sometimes, formal extensions of solutions
beyond a classical singularity exist [122], but they are never unique and unrelated to the solution
preceding the singularity. This shows that a resolution of singularities has not only to provide a new
region, but also an evolution there uniquely from initial values at one side.) A Wheeler-DeWitt
quantization would similarly lead to diverging matter Hamiltonian operators and the initial value
problem for the wave function generically breaks down. In isotropic loop quantum cosmology we
have already seen that the matter Hamiltonian does not have diverging contributions from inverse
metric components even at the classical singularity. Nevertheless, the evolution could break down
if highest order coefficients in the difference equation become zero. This indeed happens with the
non-symmetric constraint (49) or (51), but in these cases can be seen not to lead to any problems:
some coefficients can become zero such that the wave function at p = 0 remains undetermined
by initial conditions, but the wave function at the other side of the classical singularity is still
determined uniquely. There is no breakdown of evolution, and thus no singularity [39]. As one
can see, this relies on crucial properties of the loop representation with well-defined inverse metric
components and a difference rather than differential equation [43].

Also the structure of difference equations is important, depending on some choices. Most im-
portant is the factor ordering or symmetrization chosen. As just discussed, the ordering used
earlier leads to non-singular evolution but with the wave function at the classical singularity itself
remaining undetermined. In anisotropic models one can symmetrize the constraint and obtain a
difference equation, such as (52), whose leading order coefficients never vanish. Evolution then
never stops and even the wave function at the classical singularity is determined. In the isotropic
case, direct symmetrization would lead to a break-down of evolution, which thus provides an ex-
ample for singular quantum evolution and demonstrates the non-triviality of continuing evolution:
The leading order coefficient would then be V,,_35 —V,,_55+ V4.5 — V,,—s5, which vanishes if and only
if 4 = 29. Thus, in the backward evolution 155 remains undetermined, just as g is undetermined
in the non-symmetric ordering. However, now 1_ss would be needed to evolve further. Since it is
not determined by initial data, one would need to prescribe this value, or else the evolution stops.
There is thus a new region at negative p, but evolution does not continue uniquely between the two
sides. In such a case, even though curvature is bounded, the quantum system would be singular.
Similar behavior happens in other orderings such as when triads are ordered to the left. Note that
also in the full theory one cannot order triads to the left since otherwise the constraint would not
be densely defined [194].

The breakdown of the symmetric ordering in isotropic models is special and related to the
fact that all directions degenerate. The breakdown does not happen for a symmetric ordering in
anisotropic or even inhomogeneous systems. One can avert it in isotropic cases by multiplying the
constraint with sgn p before symmetrizing, so that the additional factor of sgn p leads to non-zero
coefficients as in (50).

This is the general scheme, which also applies in more complicated cases. The prime example
for the general homogeneous behavior is given by the Kasner evolution of the Bianchi I model.
Here, the approach to the singularity is not isotropic but given in such a way that two of the
three diagonal metric components become zero while the third one diverges. This would lead to
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a different picture than described before since the classical singularity then lies at the infinite
boundary of metric or co-triad minisuperspace. Also unlike in the isotropic case, densities or
curvature potentials are not necessarily bounded in general as functions on minisuperspace, and
the classical dynamical approach is important. In densitized triad variables, however, we have a
situation as before since here all components approach zero, although at different rates. Now the
classical singularity is in the interior of minisuperspace and one can study the evolution as before,
again right through the classical singularity. Note that densitized triad variables were required for
a background independent quantization, and now independently for non-singular evolution.

Other homogeneous models are more complicated since for them Kasner motion takes place with
a potential given by curvature components. Approximate Kasner epochs arise when the potential
is negligible, intermitted by reflections at the potential walls where the direction of Kasner motion
in the anisotropy plane changes. Still, since in each Kasner epoch the densitized triad components
decrease, the classical singularity remains in the interior and is penetrated by the discrete quantum
evolution.

One can use this for indications as to the general inhomogeneous behavior by making use of
the BKL scenario. If this can be justified, in each spatial point the evolution of geometry is given
by a homogeneous model. For the quantum formulation this indicates that also here classical
singularities are removed. However, it is by no means clear whether the BKL scenario applies
at the quantum level since even classically it is not generally established. If the scenario is not
realized (or if some matter systems can change the local behavior), diverging p are possible and the
behavior would qualitatively be very different. One thus has to study the inhomogeneous quantum
evolution directly as done before for homogeneous cases.

In the 1-dimensional models described here classical singularities arise when E” becomes zero.
Since this is now a field, it depends on the point x on the spatial manifold where the slice hits
the classical singularity. At each such place, midisuperspace opens up to a new region not reached
by the classical evolution, where the sign of E*(z) changes and thus the local orientation of the
triad. Again, the kinematics automatically provides us with these new regions just as needed, and
quantum evolution continues. Also, the scheme is realized much more non-trivially, and now even
the non-symmetric ordering is not allowed. This is a consequence of the fact that k. = 0 for a single
edge label does not imply that neighboring volume eigenvalues vanish. There is thus no obvious
decoupling in a non-singular manner, and it shows how less symmetric situations put more stringent
restrictions on the allowed dynamics. Still, the availability of other possibilities, maybe with leading
coefficients which can vanish and result in decoupling, needs to be analyzed. Most importantly, the
symmetric version still leads to non-singular evolution even in those inhomogeneous cases which
have local gravitational degrees of freedom [57].

There is thus a general scheme for the removal of singularities: In the classical situation, one
has singular boundaries of superspace which cannot be penetrated. Densitized triad variables then
lead to new regions, given by a change in the orientation factor sgndet E which, however, does
not help classically since singularities remain as interior boundaries. For the quantum situation
one has to look at the constraint equation and see whether or not it uniquely allows to continue
a wave function to the other side (which does not require time parameters even though they may
be helpful if available). This usually depends on factor ordering and other choices that arise in
the construction of constraint operators and play a role also for the anomaly issue. One can thus
fix ambiguities by selecting a non-singular constraint if possible. However, the existence of non-
singular versions, as realized in a natural fashion in homogeneous models, is a highly non-trivial
and by no means automatic property of the theory showing its overall consistency.

In inhomogeneous models the issue is more complicated. We thus have a situation where the
theory, which so far is well-defined, can be tested by trying to extend results to more general
cases. It should also be noted that different models should not require different quantization
choices unless symmetry itself is clearly responsible (as happens with the orientation factor in the
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symmetric ordering for an isotropic model, or when non-zero spin connection components receive
covariant meaning in models), but that there should rather be a common scheme leading to non-
singular behavior. This puts further strong conditions on the construction, and is possible only if
one knows how models and the full theory are related.

5.16 Initial/boundary value problems

In isotropic models the gravitational part of the constraint corresponds to an ordinary difference
operator which can be interpreted as generating evolution in internal time. One thus needs to
specify only initial conditions to solve the equation. The number of conditions is large since, first,
the procedure to construct the constraint operator usually results in higher order equations and,
second, this equation relates values of a wave function 1, defined on an uncountable set. In general,
one thus has to choose a function on a real interval unless further conditions are used.

This can be achieved, for instance, by using observables that can reduce the kinematical frame-
work back to wave functions defined on a countable discrete lattice [202]. Similar restrictions can
come from semiclassical properties or the physical inner product [162], all of which has not yet
been studied in generality.

The situation in homogeneous models is similar, but now one has several gravitational degrees
of freedom only one of which is interpreted as internal time. One has a partial difference equation
for a wave function on a minisuperspace with boundary, and initial as well as boundary conditions
are required [48]. Boundary conditions are imposed only at non-singular parts of minisuperspace
such as p = 0 in LRS models (51). They must not be imposed at places of classical singularities,
of course, where instead the evolution must continue just as at any regular part.

In inhomogeneous models, then, there are not only many independent kinematical variables
but also many difference equations for only one wave function on midisuperspace. These difference
equations are of a similar type as in homogeneous models, but they are coupled in complicated
ways. Since one has several choices in the general construction of the constraint, there are different
possibilities for the way how difference equations arise and are coupled. Not all of them are expected
to be consistent, i.e., in many cases some of the difference equations will not be compatible such
that there would be no non-zero solution at all. This is related to the anomaly issue since the
commutation behavior of difference operators is important for properties and the existence of
common solutions.

So far, the evolution operator in inhomogeneous models has not been studied in detail, and
solutions in this case remain poorly understood. The difficulty of this issue can be illustrated by
the expectations in spherical symmetry where there is only one classical physical degree of freedom.
If this is to be reproduced for semiclassical solutions of the quantum constraint, there must be a
subtle elimination of infinitely many kinematical degrees of freedom such that in the end only one
physical degree of freedom remains. Thus, from the many parameters needed in general to specify a
solution to a set of difference equations, only one can remain when compatibility relations between
the coupled difference equations and semiclassicality conditions are taken into account.

How much this cancellation depends on semiclassicality and asymptotic infinity conditions
remains to be seen. Some influence is to be expected since classical behavior should have a bearing
on the correct reproduction of classical degrees of freedom. However, it may also turn out that
the number of solutions to the quantum constraint is more sensitive to quantum effects. It is
already known from isotropic models that the constraint equation can imply additional conditions
for solutions beyond the higher order difference equation, as we will discuss in Section 5.18. This
usually arises at the place of classical singularities where the order of the difference equation
can change. Since the quantum behavior at classical singularities is important here, the number
of solutions can be different from the classically expected freedom, even when combined with
possible semiclassical requirements far away from the singularity. We will now first discuss these
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requirements in semiclassical regimes, followed by more information on possibly arising additional
conditions for solutions.

5.17 Pre-classicality and boundedness

The high order of difference equations implies that there are in general many independent solu-
tions, most of which are oscillating on small scales, i.e., when the labels change only slightly. One
possibility to restrict the number of solutions then is to require suppressed or even absent oscilla-
tions on small scales [40]. Intuitively, this seems to be a pre-requisite for semiclassical behavior and
has thus been called pre-classicality. It can be motivated by the fact that a semiclassical solution
should not be sensitive to small changes of, e.g., the volume by amounts of Planck size. However,
even though the criterion sounds intuitively reasonable, there is so far no justification through
more physical arguments involving observables or measurement processes to extract information
from wave functions. The status of pre-classicality as a selection criterion is thus not final.

Moreover, pre-classicality is not always consistent in all disjoint classical regimes or with other
conditions. For instance, as discussed in the following section, there can be additional conditions
on wave functions arising from the constraint equation at the classical singularity. Such conditions
do not arise in classical regimes, but they nevertheless have implications for the behavior of wave
functions there through the evolution equation [87, 86]. Pre-classicality also may not be possible
to impose in all disconnected classical regimes. If the evolution equation is locally stable — which
is a basic criterion for constructing the constraint — choosing initial values in classical regimes,
which do not have small-scale oscillations, guarantees that oscillations do not build up through
evolution in a classical regime [59]. However, when the solution is extended through the quantum
regime around a classical singularity, oscillations do arise and do not in general decay after a new
supposedly classical regime beyond the singularity is entered. It is thus not obvious that indeed
a new semiclassical region forms even if the quantum evolution for the wave function is non-
singular. On the other hand, evolution does continue to large volume and macroscopic regions,
which is different from other scenarios such as [124] where inhomogeneities have been quantized
on a background.

A similar issue is the boundedness of solutions, which also is motivated intuitively by referring
to the common probability interpretation of quantum mechanics [119] but must be supported
by an analysis of physical inner products. The issue arises in particular in classically forbidden
regions where one expects exponentially growing and decaying solutions. If a classically forbidden
region extends to infinite volume, as happens for models of recollapsing universes, the probability
interpretation would require that only the exponentially decaying solution is realized. As before,
such a condition at large volume is in general not consistent in all asymptotic regions or with other
conditions arising in quantum regimes.

Both issues, pre-classicality and boundedness, seem to be reasonable, but their physical signif-
icance has to be founded on properties of the physical inner product. They are rather straight-
forward to analyze in isotropic models without matter fields, where one is dealing with ordinary
difference equations. However, other cases can be much more complicated such that conclusions
drawn from isotropic models alone can be misleading. Moreover, numerical investigations have to
be taken with care since in particular for boundedness an exponentially increasing contribution
can easily arise from numerical errors and dominate the exact, potentially bounded solution.

One thus needs analytical or at least semi-analytical techniques to deal with these issues. For
pre-classicality one can advantageously use generating function techniques [87] if the difference
equation is of a suitable form, e.g., has only coefficients with integer powers of the discrete pa-
rameter. The generating function G(z) := ) 1,z for a solution 1, on an equidistant lattice
then solves a differential equation equivalent to the difference equation for ¢,. If G(x) is known,
one can use its pole structure to get hints for the degree of oscillations in ¥,. In particular the
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behavior around x = —1 is of interest to rule out alternating behavior where v, is of the form
Y, = (—1)", with &, > 0 for all n (or at least all n larger than a certain value). At xz = —1
we then have G(—1) = )", &,, which is less convergent than the value for a non-alternating so-
lution ¥, = &, resulting in G(—1) =3 (—1)"&,. One can similarly find conditions for the pole
structure to guarantee boundedness of 1, but the power of the method depends on the form of
the difference equation. More general techniques are available for the boundedness issue, and also
for alternating behavior, by mapping the difference equation to a continued fraction which can
be evaluated analytically or numerically [71]. One can then systematically find initial values for
solutions that are guaranteed to be bounded.

5.18 Dynamical initial conditions

I am Aton when I am alone in the Nun, but I am Re when he appears, in the moment
when he starts to govern what he has created.
Book of the Dead

The traditional subject of quantum cosmology is the imposition of initial conditions for the wave
function of a universe in order to guarantee its uniqueness. In the Wheeler—-DeWitt framework this
is done at the singularity a = 0, sometimes combined with final conditions in the classical regime.
One usually uses intuitive pictures as guidance, akin to Lemaitre’s primitive atom whose decay is
supposed to have created the world, Tryon’s and Vilenkin’s tunneling event from nothing, or the
closure of space-time into a Euclidean domain by Hartle and Hawking.

In the latter approaches, which have been formulated as initial conditions for solutions of the
Wheeler-DeWitt equation [204, 121], the singularity is still present at a = 0, but re-interpreted
as a meaningful physical event through the conditions. In particular, the wave function is still
supported at the classical singularity, i.e., ¥(0) # 0, in contrast to DeWitt’s original idea of
requiring ¥ (0) = 0 as a means to argue for the absence of singularities in quantum gravity [104].
DeWitt’s initial condition is in fact, though most appealing conceptually, not feasible in general
since it does not lead to a well-posed initial value formulation in more complicated models: the
only solution would then vanish identically. Zeh tried to circumvent this problem, for instance
by proposing an ad hoc Planck potential, which is noticeable only at the Planck scale and makes
the initial problem well-defined [89]. However, the problem remains that in general there is no
satisfying origin of initial values.

In all these ideas, the usual picture in physics has been taken that there are dynamical laws
describing the general behavior of a physical system, and independently initial or boundary con-
ditions to select a particular situation. This is reasonable since usually one can prepare a system,
corresponding to choosing initial and boundary values, and then study its behavior as determined
by the dynamical laws. For cosmology, however, this is not appropriate since there is no way to
prepare the universe.

At this point, there is a new possibility opened up by loop quantum cosmology where the dy-
namical law and initial conditions can be part of the same entity [40, 78, 49]. This is a specialty
of difference equations whose order can change locally, in contrast to differential equations. Math-
ematically, such a difference equation would be called singular since its leading order coefficients
can become zero. However, physically we have already seen that the behavior is non-singular since
the evolution does not break down.

The difference equation follows from the constraint equation, which is the primary object in
canonical quantum gravity. As discussed before, it is usually of high order in classical regimes,
where the number of solutions can be restricted, e.g., by pre-classicality. But this, at most, brings
us to the number of solutions that we have for the Wheeler—-DeWitt equation such that one needs
additional conditions as in this approach. The new aspect now is that this can follow from the
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constraint equation itself: since the order of the difference equation can become smaller at the
classical singularity, there are less solutions than expected from the semiclassical behavior. In the
simplest models, this is just enough to result in a unique solution up to norm, as appropriate
for a wave function describing a universe. In those cases, the dynamical initial conditions are
comparable to DeWitt’s initial condition, albeit in a manner that is well-posed even in some cases
where DeWitt’s condition is not [64].

In general, the issue is not clear but should be seen as a new option presented by the discrete
formulation of loop quantum cosmology. Since there can be many conditions to be imposed on
wave functions in different regimes, one has to see in each model whether or not suitable non-
zero solutions remain at all. In fact, some first investigations indicate that different requirements
taken together can be very restrictive [86], which seems to relate well with the non-separability
of the kinematical Hilbert space [98]. So far, only homogeneous models have been investigated
in detail, but the mechanism of decoupling is known not to be realized in an identical manner in
inhomogeneous models.

Inhomogeneous models can add qualitatively new ingredients also to the issue of initial con-
ditions due to the fact that there are many coupled difference equations. There can then be
consistency conditions for solutions to the combined system which can strongly restrict the num-
ber of independent solutions. This may be welcome, e.g., in spherical symmetry where a single
physical parameter remains, but the restriction can easily become too strong even below the clas-
sically expected one. Since the consistency between difference equations is related to the anomaly
issue, there may be an important role played by quantum anomalies. While classically anomalies
should be absent, the quantum situation can be different since it also takes the behavior at the
classical singularity into account and is supposed to describe the whole universe. Anomalies can
then be precisely what one needs in order to have a unique wave function of a universe even in in-
homogeneous cases where initially there is much more freedom. This does not mean that anomalies
are simply ignored or taken lightly since it is difficult to arrange having the right balance between
many solutions and no non-zero solution at all. However, quantum cosmology suggests that it is
worthwhile to have a less restricted, unconventional view on the anomaly issue.

5.19 Summary

There is a general construction of a loop representation in the full theory and its models, which
is characterized by compactified connection spaces and discrete triad operators. Strong simplifica-
tions of some technical and conceptual steps occur in diverse models. Such a general construction
allows a view not only on the simplest case, isotropy, but on essentially all representative systems
for gravity.

Most important is the dynamics, which in the models discussed here can be formulated by
a difference equation on superspace. A general scheme for a unique extension of wave functions
through classical singularities is realized, such that the quantum theory is non-singular. This
general argument, which has been verified in many models, is quite powerful since it does not require
detailed knowledge of or assumptions about matter. It is independent of the availability of a global
internal time, and so the problem of time does not present an obstacle. Moreover, a complicated
discussion of quantum observables can be avoided since once it is known that a wave function can be
continued uniquely one can extract relational information at both sides of the classical singularity.
(If observables would distinguish both sides with their opposite orientations, they would strongly
break parity even on large scales in contradiction with classical gravity.) Similarly, information on
the physical inner product is not required since there is a general statement for all solutions of the
constraint equation. The uniqueness of an extension through the classical singularity thus remains
even if some solutions have to be excluded for the physical Hilbert space or factored out if they
have zero norm.
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This is far from saying that observables or the physical inner product are irrelevant for an
understanding of dynamical processes. Such constructions can, fortunately, be avoided for a general
statement of non-singular evolution in a wide class of models. For details of the transition and to
get information of the precise form of space-time at the other side of classical singularities, however,
all those objects are necessary and conceptual problems in their context have to be understood.

So far, the transition has often been visualized by intuitive pictures such as a collapsing uni-
verse turning its inside out when orientation is reversed. An hourglass presents a picture for the
importance of discrete quantum geometry close to the classical singularity and the emergence of
continuous geometry on large scales: Away from the bottleneck of the hourglass, its sand seems
to be sinking down almost continuously. Directly at the bottleneck with its small circumference,
however, one can see that time measured by the hourglass proceeds in discrete steps — one grain
at a time.

The main remaining issue for the mechanism to remove singularities then is the question how
the models, where it has been demonstrated, are related to the full theory and to what extent they
are characteristic for full quantum geometry.
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6 Models within the Full Theory

If he uses a model at all, he is always aware that it pictures only certain aspects of the
situation and leaves out other aspects. The total system of physics is no longer required
to be such that all parts of its structure can be clearly visualized. . ..

A physicist must always guard against taking a visual model as more than a pedagogical
device or makeshift help. At the same time, he must also be alert to the possibility
that a visual model can, and sometimes does, turn out to be literally accurate. Nature
sometimes springs such surprises.
RupOLF CARNAP
An Introduction to the Philosophy of Science

In the preceding section, the link between models and the full theory was given through the
same basic variables and the same kind of representation used, as well as a general construction
scheme for the Hamiltonian constraint operator. The desired simplifications were realized thanks
to the symmetry conditions, but not too strongly since basic features of the full theory are still
recognizable in models. For instance, even though possible in many ways and often made use
of, we did not employ special gauges or coordinate or field dependent transformations obscuring
the relation. The models are thus as close to the full theory as possible while making full use of
simplifications in order to have explicit applications.

Still, there are always some differences not all of which are easy to disentangle. For instance,
we have discussed possible degeneracies between spin labels and edge lengths of holonomies, which
can arise in the presence of a partial background and lead to new ambiguity parameters not present
in the full theory. The question thus arises what the precise relation between models and the full
theory is, or even how and to what extent a model for a given symmetry type can be derived from
the full theory.

This is possible for the basic representation: The symmetry and the partial background it
provides can be used to define natural subalgebras of the full holonomy/flux algebra by using
holonomies and fluxes along symmetry generators and averaging in a suitable manner. Since the
full representation is unique and cyclic, it induces uniquely a representation of models that is
taken directly from the full theory. This will now be described independently for states and basic
operators to provide the idea and to demonstrate the role of the extra structure involved. See also
[57] and [63] for illustrations in the context of spherical symmetry and anisotropy, respectively.

6.1 Symmetric states

One can imagine to construct states that are invariant under a given action of a symmetry group
on space by starting with a general state and naively summing over all its possible translates by
elements of the symmetry group. For instance on spin network states, the symmetry group acts by
moving the graph underlying the spin network, keeping the labels fixed. Since states with different
graphs are orthogonal to each other, the sum over uncountably many different translates cannot be
normalizable. In simple cases, such as for graphs with a single edge along a symmetry generator,
one can easily make sense of the sum as a distribution. But this is not clear for arbitrary states,
in particular for states whose graphs have vertices, which on the other hand would be needed
for sufficient generality. A further problem is that any such action of a symmetry group is a
subgroup of the diffeomorphism group. At least on compact space manifolds where there are
no asymptotic conditions for diffeomorphisms in the gauge group, it then seems that any group
averaged diffeomorphism invariant state would already be symmetric with respect to arbitrary
symmetries, which is obviously not sensible.
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In fact, symmetries and (gauge) diffeomorphisms are conceptually very different, even though
mathematically they are both expressed by group actions on a space manifold. Gauge diffeomor-
phisms are generated by first class constraints of the theory, which in canonical quantum gravity
are imposed in the Dirac manner [105] or following refined algebraic quantization [28], conveniently
done by group averaging [153]. Symmetries, however, are additional conditions imposed on a given
theory to extract a particular sector of special interest. They can also be formulated as constraints
added to the theory, but these constraints must be second class for a well defined framework:
One obtains a consistent reduced theory, e.g., with a non-degenerate symplectic structure, only if
configuration and momentum variables are required to be symmetric in the same (or dual) way.

In the case of gravity in Ashtekar variables, the symmetry type determines, along the lines of
Appendix A the form of invariant connections and densitized triads defining the phase space of the
reduced model. At the quantum level, however, one cannot keep connections and triads on the same
footing since a polarization is required. One usually uses the connection representation in loop
quantum gravity such that states are functionals on the space of connections. In a minisuperspace
quantization of the classically reduced model states would then be functionals only of invariant
connections for the given symmetry type. This suggests to define symmetric states in the full
theory to be those states whose support contains invariant connections as a dense subset [66, 38]
(one requires only a dense subset because possible generalized connections must be allowed for).
As such, they must necessarily be distributional, as already expected from the naive attempt at
construction. Symmetric states thus form a subset of the distributional space Cyl*. In this manner,
only the reduced degrees of freedom are relevant, i.e., the reduction is complete, and all of them
are indeed realized, i.e., the reduction is not too strong. Moreover, an “averaging” map from a
non-symmetric state to a symmetric one can easily be defined by restricting the non-symmetric
state to the space of invariant connections and requiring it to vanish everywhere else.

This procedure defines states as functionals, but since there is no inner product on the full
Cyl® this does not automatically result in a Hilbert space. Appropriately defined subspaces of
Cyl*, nevertheless, often carry natural inner products, which is also the case here. In fact, since
the reduced space of invariant connections can be treated by the same mathematical techniques
as the full space, it carries an analog of the full Ashtekar—-Lewandowski measure and this is indeed
induced from the unique representation of the full theory. The only difference is that in general
an invariant connection is not only determined by a reduced connection but also by scalar fields
(see Appendix A). As in the full theory, this space Aj,, of reduced connections and scalars is
compactified to the space Ajn, of generalized invariant connections on which the reduced Hilbert
space is defined. One thus arrives at the same Hilbert space for the subset of symmetric states in
Cyl* as used before for reduced models, e.g., using the Bohr compactification in isotropic models.
The new ingredient now is that these states have meaning in the full theory as distributions, whose
evaluation on normalizable states depends on the symmetry type and partial background structure
used.

That the symmetric Hilbert space obtained in this manner is identical to the reduced loop
quantization of Section 5 does not happen by definition but is a result of the procedure. The
support of a distribution is by definition a closed subset of the configuration space, and would
thus be larger than just the set of generalized invariant connections if Aine would not be a closed
subset in A. In such a case, the reduction at the quantum level would give rise to more degrees
of freedom than a loop quantization of the classically reduced model. As shown in [66], however,
the set of invariant connections is a closed subset of the full space of connections such that loop
quantum cosmology can be interpreted as a minisuperspace quantization.
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6.2 Basic operators

In the classical reduction, symmetry conditions are imposed on both connections and triads, but
so far at the level of states only connections have been taken into account. Configuration and
momentum variables play different roles in any quantum theory since a polarization is necessary.
As we based the construction on the connection representation, symmetric triads have to be imple-
mented at the operator level. (There cannot be additional reduction steps at the state level since,
as we already observed, states just implement the right number of reduced degrees of freedom.)

Classically, the reduction of phase space functions is simply done by pull back to the reduced
phase space. The flow generated by the reduced functions then necessarily stays in the reduced
phase space and defines canonical transformations for the model. An analog statement in the
corresponding quantum theory would mean that the reduced state space would be fixed by full
operators such that their action (or dual action on distributions) could directly be used in the
model without further work. This, however, is not the case with the reduction performed so far.
We have considered only connections in the reduction of states, and also classically a reduction to
a subspace A, X £, where connections are invariant but not triads, would be incomplete. First,
this would not define a phase space of its own with a non-degenerate symplectic structure. More
important in this context is the fact that this subspace would not be preserved by the flow of
reduced functions.

As an example (see also [52] for a different discussion in the spherically symmetric model) we
consider a diagonal homogeneous model, such as Bianchi I for simplicity, with connections of the
form A%dz® = éAjw’ and look at the flow generated by the full volume V = [ d3zy/|det E]. Tt
is straightforward to evaluate the Poisson bracket

{A}(2),V} = 2myGeapeeF ELES; //|det E]|

already used in (13). A point on Aj,, x £ characterized by ¢ 1)A§ and an arbitrary triad thus
changes infinitesimally by

(&) Ap) = 2myGerpee’™ BV B /+/|det B,

which does not preserve the invariant form: First, on the right hand side we have arbitrary fields F
such that §(¢ I)AiI) is not homogeneous. Second, even if we would restrict ourselves to homogeneous
E, 6(¢(ryA7) would not be of the original diagonal form. This is the case only if 6(¢(r)A7) =
A76(¢(ry) since only the ¢y are canonical variables. The latter condition is satisfied only if

€TEAJO(E(r)Ay) = AmyGenel| ) EVES [ /| det |

vanishes, which is not the case in general. This condition is true only if E{* o< A{, i.e., if we restrict
the triads to be of diagonal homogeneous form just as the connections.

A reduction of only one part of the canonical variables is thus incomplete and leads to a
situation where most phase space functions generate a flow that does not stay in the reduced
space. Analogously, the dual action of full operators on symmetric distributional states does not
in general map this space to itself. Thus, an arbitrary full operator maps a symmetric state to a
non-symmetric one and cannot be used to define the reduced operator. In general, one needs a
second reduction step that implements invariant triads at the level of operators by an appropriate
projection of its action back to the symmetric space. This can be quite complicated, and fortunately
there are special full operators adapted to the symmetry for which this step is not necessary.

From the above example, it is clear that those operators must be linear in the momenta EY,
for otherwise one would have a triad remaining after evaluating the Poisson bracket, which on
Ainy X € would not be symmetric everywhere. Fluxes are linear in the momenta, so we can try
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pK(2) = fs d2yA2“K)E,‘jwf where S, is a surface in the I.J-plane at position z = zy in the K-
z0

direction. By choosing a surface along symmetry generators X; and X ; this expression is adapted

to the symmetry, even though it is not fully symmetric yet since the position zy has to be chosen.

Again, we compute the Poisson bracket

{AL(2),p" (20)} = 87rfyGAfK> / §(z,y)wi (y) A%y

20

resulting in | |
8(é)A7) = 81yGATS(2, 20).

Also here the right hand side is not homogeneous, but we have eijkAgd(é(l)A’;) = 0 such that
the diagonal form is preserved. The violation of homogeneity is expected since the flux is not
homogeneous. This can easily be remedied by “averaging” the flux in the K-direction to

N
K ._ 7 -1 K -1
p = lim N ;p (aN~"Ly),
where Ly is the coordinate length of the K-direction if it is compact. For any finite N the
expression is well-defined and can directly be quantized, and the limit can be performed in a
well-defined manner at the quantum level of the full theory.

Most importantly, the resulting operator preserves the form of symmetric states for the diagonal
homogeneous model in its dual action, corresponding to the flux operator of the reduced model as
used before. In averaging the full operator the partial background provided by the group action
has been used, which is responsible for the degeneracy between edge length and spin in one reduced
flux label. Similarly, one can obtain holonomy operators along the I-direction that preserve the
form of symmetric states after averaging them along the J and K directions (in such a way that the
edge length is variable in the averaging limit). Thus, the dual action of full operators is sufficient
to derive all basic operators of the model from the full theory. The representation of states and
basic operators, which was seen to be responsible for most effects in loop quantum cosmology, is
thus directly linked to the full theory. This, then, defines the cosmological sector of loop quantum
gravity.

6.3 Quantization before reduction

When quantizing a model after a classical reduction, there is much freedom even in choosing
the basic representation. For instance, in homogeneous models one can use the Wheeler-DeWitt
formulation based on the Schrédinger representation of quantum mechanics. In other models one
could choose different smearings, e.g., treating triad components by holonomies and connection
components by fluxes, since transformation properties can change from the reduced point of view
(see, e.g., [52]). There is thus no analog of the uniqueness theorem of the full theory, and models
constructed in this manner would have much inherent freedom even at a basic level. With the link
to the full theory, however, properties of the unique representation there are transferred directly to
models, resulting in analogous properties such as discrete fluxes and an action only of exponentiated
connection components. This is sufficient for a construction by analogy of composite operators,
such as the Hamiltonian constraint according to the general scheme.

If the basic representation is taken from the full quantization, one makes sure that many
consistency conditions of quantum gravity are already observed. This can never be guaranteed
when classically reduced models are quantized since then many consistency conditions trivialize
as a consequence of simplifications in the model. In particular, background independence requires
special properties, as emphasized before. A symmetric model, however, always incorporates a
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partial background and within a model alone one cannot determine which structures are required
for background independence. In loop quantum cosmology, on the other hand, this is realized
thanks to the link to the full theory. Even though a model in loop quantum cosmology can also be
seen as obtained by a particular minisuperspace quantization, it is distinguished by the fact that
its representation is derived by quantizing before performing the reduction.

In general, symmetry conditions take the form of second class constraints since they are im-
posed for both connections and triads. It is often said that second class constraints always have
to be solved classically before the quantization because of quantum uncertainty relations. This
seems to make impossible the above statement that symmetry conditions can be imposed after
quantizing. It is certainly true that there is no state in a quantum system satisfying all second
class constraints of a given reduction. Also using distributional states, as required for first class
constraints with zero in the continuous spectrum, does not help. The reduction described above
thus does not simply proceed in this way by finding states, normalizable or distributional, in the
full quantization. Instead, the reduction is done at the operator algebra level, or alternatively the
selection of symmetric states is accompanied by a reduction of operators which, at least for basic
ones, can be performed explicitly. In general terms, one does not look for a sub-representation
of the full quantum representation, but for a representation of a suitable subalgebra of operators
related to the symmetry. This gives a well-defined map from the full basic representation to a new
basic representation for the model. In this map, non-symmetric degrees of freedom are removed
irrespective of the uncertainty relations from the full point of view.

Since the basic representations of the full theory and the model are related, it is clear that similar
ambiguities arise in the construction of composite operators. Some of them are inherited directly,
such as the representation label j one can choose when connection components are represented
through holonomies [116]. Other ambiguities are reduced in models since many choices can result
in the same form or are restricted by adaptations to the symmetry. This is for instance the case for
positions of new vertices created by the Hamiltonian constraint. However, also new ambiguities can
arise from degeneracies such as that between spin labels and edge lengths resulting in the parameter
¢ in Section 5.4. Also factor ordering can appear more ambiguously in a model and lead to less
unique operators than in the full theory. As a simple example we can consider a system with two
degrees of freedom (g1, p1; g2, p2) constrained to be equal to each other: C; = ¢1 — g2, Cy = p1 — po.
In the unconstrained plane (qi,¢2), angular momentum is given by J = ¢1p2 — gop1 with an
unambiguous quantization. Classically, J vanishes on the constraint surface C; = 0 = Cs, but in
the quantum system ambiguities arise: ¢; and ps commute before but not after reduction. There
is thus a factor ordering ambiguity in the reduction which is absent in the unconstrained system.
Since angular momentum operators formally appear in the volume operator of loop quantum
gravity, it is not surprising that models have additional factor ordering ambiguities in their volume
operators. Fortunately, they are harmless and result, e.g., in differences as an isotropic volume
spectrum |u|3/2 compared to /(Jju] — 1)[u[(Ju| + 1), where the second form [37] is closer to SU(2)
as compared to U(1) expressions.

6.4 Minisuperspace approximation

Most physical applications in quantum gravity are obtained in mini- or midisuperspace approxi-
mations by focusing only on degrees of freedom relevant for a given situation of interest. Other
degrees of freedom and their interactions with the remaining ones are ignored so as to simplify the
complicated full dynamics. Their role in particular for the evolution, however, is not always clear,
and so one should check what happens if they are gradually tuned in.

There are examples, in the spirit of [144], where minisuperspace results are markedly different
from less symmetric ones. In those analyses, however, already the classical reduction is unstable, or
back reaction is important, and thus solutions that start almost symmetric move away rapidly from
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the symmetric submanifold of the full phase space. The failure of a minisuperspace quantization
in those cases can thus already be decided classically and is not a quantum gravity issue. Even
a violation of uncertainty relations, which occurs in any reduction at the quantum level, is not
automatically dangerous but only if corresponding classical models are unstable.

As for the general approach to a classical singularity, the anisotropic behavior and not so
much inhomogeneities is considered to be essential. Isotropy can indeed be misleading, but the
anisotropic behavior is more characteristic. In fact, relevant features of full calculations on a single
vertex [85] agree with the anisotropic [48, 62], but not the isotropic behavior [46]. Also patching
of homogeneous models to form an inhomogeneous space reproduces some full results even at a
quantitative level [70]. The main differences and simplifications of models can be traced back to
an effective Abelianization of the full SU(2)-gauge transformations, which is not introduced by
hand in this case but a consequence of symmetries. It is also one of the reasons why geometrical
configurations in models are usually easier to interpret than in the full theory. Most importantly,
it implies strong conceptual simplifications since it allows a triad representation in which the
dynamics can be understood more intuitively than in a connection representation. Explicit results
in models have thus been facilitated by this property of basic variables, and therefore a comparison
with analogous situations in the full theory is most interesting in this context, and most important
as a test of models.

If one is using a quantization of a classically reduced system, it can only be considered a model
for full quantum gravity. Relations between different models and the full theory are important in
order to specify to what degree such models approximate the full situation, and where additional
correction terms by the ignored degrees of freedom have to be taken into account. This is under
systematic investigation in loop quantum cosmology.

6.5 Quantum geometry from models to the full theory

By now, many models are available explicitly and can be compared with each other and the full
theory. Original investigations were done in isotropic models, which in many respects are special,
but important aspects of the loop quantization are now known to be realized in all models and
sometimes the full theory without contradictions so far. There is thus a consistent picture of
singularity-free dynamical behavior together with candidates for characteristic phenomenology.

There are certainly differences between models, which can be observed already for geometrical
spectra such as area or volume. Akin to level splitting in atoms or molecules, spectra become more
complicated when symmetry is reduced [66, 74, 65]. Also the behavior of densities or curvatures
on arbitrary geometrical configurations can be different in different models. In isotropic models,
densities are bounded, which is a kinematical statement but in this case important for a singularity
free evolution. It is important here since minisuperspace is just one-dimensional and so dynamical
trajectories could not pass regions of unbounded curvature should they exist. Anisotropic models
are more characteristic for the approach to classical singularities, and here curvature expressions in
general remain unbounded if all of minisuperspace is considered. Again, this is only kinematical,
and here the dynamics tells us that evolution does not proceed along directions of unbounded
curvature. This is similar in inhomogeneous models studied so far.

In the full theory the situation becomes again more complicated since here densities can be
unbounded even on degenerate configurations of vanishing volume eigenvalue [85]. In this case,
however, it is not known what the significance for evolution is, or even the geometrical meaning of
the degenerate configurations.

As an analogy one can, as before, take spectroscopy of atoms and level splitting. Essential
properties, such as the stability of the hydrogen atom in quantum mechanics as opposed to the
classical theory, are unchanged if complicated interactions are taken into account. In this context,
it is important to take into account that stability can and does change if arbitrary interactions
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would be considered, rather than realistic ones, which one already fixed from other observations.
Hydrogen then remains stable under those realistic interactions, but its properties would change
drastically if any possible interaction term would be considered. Similarly, it is not helpful to
consider the behavior of densities on arbitrary geometries unless it is known which configurations
are important for dynamics or at least their geometrical role is clear. Dynamics in the canonical
picture is encoded in the Hamiltonian constraint, and including it (or suitable observables) in the
analysis is analogous, in the picture of atomic spectra, to making use of realistic gravitational
interaction terms. In the full theory, such an analysis is currently beyond reach, but it has been
extensively studied in loop quantum cosmology. Since the non-singular behavior of models, whether
or not curvature is bounded, is a consequence of basic effects and the representation derived from
the full theory, it can be taken as reliable information on the behavior in quantum geometry.
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7 Philosophical Ramifications

In the context of loop quantum cosmology or loop quantum gravity in general, some wider issues
arise that have already been touched briefly. This has to be seen in the general context of what
one should expect from quantum theories of gravity for which there are several quite different
approaches. These issues deal with questions about the uniqueness of theories or solutions and
what information is accessible in one universe. Also the role of time plays a more general role, and
the related question of unitarity or determinism.

7.1 Unique theories, unique solutions

It is often the case that, before quantitative concepts can be introduced into a field of
science, they are preceded by comparative concepts that are much more effective tools
for describing, predicting, and explaining than the cruder classificatory concepts.
RUDOLF CARNAP
An Introduction to the Philosophy of Science

The rise of loop quantum gravity presents an unprecedented situation in physics where full
gravity is tackled in a background independent and non-perturbative manner. Not surprisingly,
the result is often viewed skeptically since it is very different from other well-studied quantum
field theories. Usually, intuition in quantum field theory comes either from models which are
so special that they are completely integrable, or from perturbative expansions around free field
theories. Since no relevant ambiguities arise in this context, ambiguities in other frameworks are
usually viewed with suspicion. A similar treatment is not possible for gravity because a complete
formulation as a perturbation series around a free theory is unavailable and would anyway not be
suitable in important situations of high curvature. In fact, reformulations as free theories exist
only in special, non-dynamical backgrounds such as Minkowski space or planar waves which, if
used, immediately introduce a background.

If this is to be avoided in a background independent formulation, it is necessary to deal with
the full non-linear theory. This leads to complicated expressions with factor ordering and other
ambiguities, which are usually avoided in quantum field theory but not unfamiliar from quantum
theory in general. Sometimes it is said that such a theory looses its predictive power or even
suggested to stop working on applications of the theory until all ambiguities are eliminated. This
view, of course, demonstrates a misunderstanding of the scientific process where general effects
play important roles even if they can be quantified only at later stages. What is important is to
show that qualitative effects are robust enough such that their implications do not crucially depend
on one choice among many.

So far, applications of loop quantum gravity and cosmology are in comparative stages where
reliable effects can be derived from basic properties and remaining ambiguities preclude sharp
quantitative predictions in general (notable exceptions are fundamental properties, such as the
computation of v through black hole entropy [11, 12, 108, 155]). These ambiguities have to be
constrained by further theoretical investigations of the overall consistency, or by possible observa-
tions.

Ambiguities certainly mean that a theory cannot be formulated uniquely, and uniqueness often
plays a role in discussions of quantum gravity. In the many approaches different kinds of unique-
ness have been advertised, most importantly the uniqueness of the whole theory, or the uniqueness
of a solution appropriate for the one universe we can observe. Both expectations seem reasonable,
though immodest. But they are conceptually very different and even, maybe surprisingly, incon-
sistent with each other as physical properties: For let us assume that we have a theory from which
we know that it has one and only one solution. Provided that there is sufficient computational
access to that theory, it is falsifiable by comparing properties of the solution with observations in
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the universe. Now, our observational access to the universe will always be limited and so, even if
the one solution of our theory does agree with observations, we can always find ways to change the
theory without being in observational conflict. The theory thus cannot be unique. Changing it in
the described situation may only violate other, external conditions that are not observable.

The converse, that a unique theory cannot have a unique solution, follows by logically reversing
the above argument. However, one has to be careful about different notions of uniqueness of a
theory. It is clear from the above argument that uniqueness of a theory can be realized only under
external, such as mathematical, conditions, which always are a matter of taste and depend on
existing knowledge. Nevertheless, the statement seems to be supported by current realizations of
quantum gravity. String theory is one example where the supposed uniqueness of the theory is far
outweighed by the non-uniqueness of its solutions. It should also be noted that the uniqueness of
a theory is not falsifiable, and therefore not a scientific claim, unless its solutions are sufficiently
restricted within the theory. Otherwise, one can always find new solutions if one comes in conflict
with observations. A theory itself, however, is falsifiable if it implies characteristic effects for its
solutions even though it may otherwise be ambiguous.

7.2 The role of time

Dies alles dauerte eine lange Zeit, oder eine kurze Zeit: denn, recht gesprochen, gibt es
fir dergleichen Dinge auf Erden keine Zeit.

(All this took a long time, or a short time: for, strictly speaking, for such things no

time on earth exists.)
FRIEDRICH NIETZSCHE
Thus Spoke Zarathustra

Often, time is intuitively viewed as coordinate time, i.e., one direction of space-time. However,
this does not have invariant physical meaning in general relativity, and conceptually an internal
time is more appropriate. Evolution is then measured in a relational manner of some degrees of
freedom with respect to others [33, 170, 106]. In quantum cosmology, as we have seen, this concept
is even more general since internal time keeps making sense at the quantum level also around
singularities where the classical space-time dissolves.

The wave function thus extends to a new branch beyond the classical singularity, i.e., to a
classically disconnected region. Intuitively this leads to a picture of a collapsing universe preceding
the Big Bang, but one has to keep in mind that this is the picture obtained from internal time
where other time concepts are not available. In such a situation it is not clear, intuitive pictures
notwithstanding, how this transition would be perceived by observers were they able to withstand
the extreme conditions. It can be said reliably that the wave function is defined at both sides,
“before” and “after”, and every computation of physical predictions, e.g., using observables, we
can do at “our” side can also be done at the other side. In this sense, quantum gravity is free of
singularities and provides a transition between the two branches. The more complicated question
is what this means for evolution in a literal sense of our usual concept of time (see also [200]).

Effective equations displaying bounces in coordinate time evolution indicate that indeed clas-
sical singularities are replaced by a bouncing behavior. However, this does not occur completely
generally and does not say anything about the orientation reversal which is characteristic for the
quantum transition. In fact, effective equations describe the motion of semiclassical wave packets,
which becomes less reliable at very small volume. And even if the effective bounce happens far
away from the classical singularity will there in general be a part of the wave function splitting off
and traversing to the other orientation as can be seen in the example of Figure 10.

It is not clear in general that a wave function penetrating a classical singularity enters a new
classical regime even if the volume becomes large again. For instance, there can be oscillations
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07

Figure 10: Still from a Movie showing the coordinate time evolution [72] of a wave packet starting
at the bottom and moving toward the classical singularity (vertical dotted line) for different values
of an ambiguity parameter. Some part of the wave packet bounces back (and deforms) according to
the effective classical solution (dashed), but other parts penetrate to negative p. The farther away
from a = 0 the effective bounce happens, depending on the ambiguity parameter, the smaller the
part penetrating to negative 1 is. The coordinate time evolution represents a physical state obtained
after integrating over t [72]. (To watch the movie, please go to the online version of this review
article at http: //www. livingreviews. org/ lrr-2005-11.)
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on small scales, i.e., violations of pre-classicality, picked up by the wave function when it travels
through the classical singularity. As discussed in Section 5.17, the question of what conditions
on a wave function to require for a classical regime is still open, but even if one can confidently
say that there is such a new classical region does the question arise if time continues during the
transition through the pure quantum regime. At least in the special model of a free massless scalar
in isotropic cosmology the answer to both questions is affirmative, based on the availability of a
physical inner product and quantum observables in this model [24].

Also related to this context is the question of unitary evolution. Even if one uses a selfadjoint
constraint operator, unitary evolution is not guaranteed. First, the constraint splits into a time
generator part containing derivatives or difference operators with respect to internal time and a
source part containing, for instance, the matter Hamiltonian. It is then not guaranteed that the
time generator will lead to unitary evolution. Secondly, it is not obvious in what inner product
to measure unitarity since the constraint is formulated in the kinematical Hilbert space but the
physical inner product is relevant for its solutions. This shows that the usual expectation of unitary
evolution, commonly motivated by preservation of probability or normalization of a wave function
in an absolute time parameter, is not reliable in quantum cosmology. It must be replaced by
suitable conditions on relational probabilities computed from physical wave functions.

7.3 Determinism

Hat die Zeit nicht Zeit? (Does time not have time?)
FRIEDRICH NIETZSCHE
Beyond Good and Evil

Loosely related to unitarity, but more general, is the concept of determinism. This is usually
weakened in quantum mechanics anyway since in general one makes only probabilistic statements.
Nevertheless, the wave function is determined at all times by its initial values, which is sometimes
seen as the appropriate substitute for deterministic behavior. In loop quantum cosmology the
situation again changes slightly since, as discussed in Section 5.18, the wave function may not be
determined by the evolution equation everywhere, i.e., not at points of classical singularities, and
instead acquire new conditions on its initial values. This could be seen as a form of indeterministic
behavior, even though the values of a wave function at classical singularities would not have any
effect on the behavior for non-degenerate configurations.? (If they had such an effect, the evolution
would be singular.) In this situation one deals with determinism in a background independent
context, which requires a new view.

In fact, rather than interpreting the freedom of choosing values at classical singularities as
indeterministic behavior, it seems more appropriate to see this as an example for deterministic be-
havior in a background independent theory. The internal time label y first appears as a kinematical
object through the eigenvalues of the triad operator (46). It then plays a role in the constraint
equation (49) when formulated in the triad representation. Choosing internal time is just made for
convenience, and it is the constraint equation that must be used to see if this choice makes sense
in order to formulate evolution. This is indeed the case at non-zero p where we obtain a difference
operator in the evolution parameter. At zero p, however, the operator changes and does not allow
us to determine the wave function there from previous values. Now, we can interpret this simply as
a consequence of the constraint equation rejecting the internal time value p = 0. The background
independent evolution selects the values of internal time it needs to propagate a wave function
uniquely. As it turns out, g = 0 is not always necessary for this and thus simply decouples. In
hindsight, one could already have split off |0) from the kinematical Hilbert space, thereby removing
the classical singularity by hand. Since we did not do this, it is the evolution equation that tells

2The author thanks Christian Wiithrich for discussions.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2005-11


http://www.livingreviews.org/lrr-2005-11

72 Martin Bojowald

us that this is happening anyway. Recall, however, that this is only one possible scenario obtained
from a non-symmetric constraint. For the evolution (50) following from the symmetric constraint,
no decoupling happens and p = 0 is just like any other internal time value.
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8 Research Lines

Currently, the development of loop quantum cosmology proceeds along different lines, at all levels
discussed before. We present here a list of the main ones, ordered by topics rather than importance
or difficulty.

8.1 Conceptual issues

The list of conceptual issues is not much different from but equally pressing as in quantum gravity
in general. Here, mainly the issue of time (its interpretation, different roles and explicit implemen-
tation into physics), the interpretation of the wave function in quantum theory, and technical as
well as conceptual questions related to the physical inner product need to be addressed.

8.2 Mathematical development of models

The main open issue, requiring new insights at all levels, is that of inhomogeneities. While inho-
mogeneous models have been formulated and partly analyzed, the following tasks are still to be
completed:

Exact models: In particular the dynamics of inhomogeneous models is much more complicated
to analyze than in homogeneous ones. Understanding may be improved by an interesting
cross-relation with black holes. This allows one to see if the different ingredients and effects
of a loop quantization fit together in a complete picture, which so far seems to be the case
[14, 159, 13, 76, 57]. Moreover, the dynamics can possibly be simplified and understood
better around slowly evolving horizons [79, 76]. Other horizon conditions are also being
studied in related approaches [132, 107].

Consistency: Not directly related to physical applications but equally important is the issue
of consistency of the constraints. The constraint algebra trivializes in homogeneous models,
but is much more restrictive with inhomogeneities. Here, the feasibility of formulating a
consistent theory of quantum gravity can be tested in a treatable situation. Related to
consistency of the algebra, at least at a technical level, is the question of whether or not
quantum gravity can predict initial conditions for a universe, or at least restrict its set of
solutions.

Relation between models and the full theory: By strengthening the relation between mod-
els and the full theory, ideally providing a complete derivation of models, physical applications
will be put on a much firmer footing. This is also necessary to understand better effects of
reductions such as degeneracies between different concepts or partial backgrounds. One as-
pect not realized in models so far is the large amount of non-Abelian effects in the full theory,
which can be significant also in models [54].

Numerical quantum gravity: Most systems of difference equations arising in loop quantum
gravity are too complicated to solve exactly or even to analyze. Special techniques, such as
those in [72, 87, 71, 24, 88] have to be developed so as to apply to more general systems.
In particular for including inhomogeneities, both for solving equations and interpreting solu-
tions, a new area of numerical quantum gravity has to be developed.

Perturbations: If the relation between different models is known, as presently realized for
isotropic within homogeneous models [63], one can formulate the less symmetric model per-
turbatively around the more symmetric one. This then provides a simpler formulation of the
more complicated system, easing the analysis and uncovering new effects. In this context,
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also alternative methods to introduce approximate symmetries, based on coherent states as
e.g., advocated in [84], exist.

Effective equations: Finding effective equations that capture the quantum behavior of basic
difference equations, at least in some regimes, will be most helpful for a general analysis.
However, their derivation is much more complicated for inhomogeneous systems owing to the
consistency issue. On the other hand, trying to derive them will provide important tests for
the framework, in addition to giving rise to new applications.

8.3 Applications

Once available, equations for inhomogeneous systems have the prospect of applications such as the
following.

Structure formation: There are diverse scenarios for the early universe with a potential for
viable structure formation, which can only be checked with a reliable handle on inhomo-
geneities. This applies to inflaton models with loop effects, inflation models without inflaton,
and the generation of structure before and subsequent propagation through a bounce.

Robustness: All results obtained so far have to be regarded as preliminary and their validity in
the presence of perturbative inhomogeneities has to be established. A detailed analysis of
their robustness to quantization freedom such as ambiguities or choosing matter fields is still
to be undertaken.

New effects: Some cosmological issues that have not been addressed so far from loop quantum
gravity, and which most likely require inhomogeneities, are: the initial state of the inflaton
(Gaussianity) or the present acceleration of cosmic expansion. The latter could be a result of
small, local quantum corrections adding up to a sizeable effect on the whole universe. From
a technical point of view, contact to quantum gravity phenomenology in a particle physics
context can be made (as initially in [70]).

Ansitze: For the time being, those questions can be addressed preliminaryly by choosing suitable
forms of inhomogeneous equations motivated by operators in full loop quantum gravity.

8.4 Homogeneous models

There are still several open areas in homogeneous models, which later can be extended to inhomo-
geneous ones:

Conceptual issues: This has already been mentioned above. Isotropic models provide simpler
settings to analyze, e.g., the physical inner product [127, 162, 24], observables, different
interpretations of quantum aspects or the emergence of a classical world.

Effective equations: Even in isotropic models effective equations have not yet been derived
completely. A general scheme exists, shown to be analogous to standard effective action
techniques [73], but it remains to be applied completely to quantum cosmology. This will
then lead to a complete set of correction terms and their ranges of validity and importance.
Also the question of whether an effective action for quantum cosmology exists and what its
form is can be addressed.

Matter systems: Matter systems provide a rich source of diverse scenarios, but a full analysis
is yet to be done. This includes adding different kinds of fluids [163], fermions or anisotropy
parameters (shear term).
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8.5 Outlook

All these developments will certainly also aid and suggest developments in the full theory, and
reciprocally be assisted by new ideas realized there. At the other side, guidance as well as means
for testing can be expected from future observations.
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A Invariant connections

We first fix our notation by describing the additional structure provided by a given action of a
symmetry group on a space manifold. This allows us to review the mathematical classification of
principal fiber bundles carrying an action of a symmetry group, and their invariant connections.

A.1 Partial backgrounds

To describe a theory of connections we need to fix a principal fiber bundle P(X, G, ) over the
analytic base manifold ¥ with compact structure group G. Let S < Aut(P) be a Lie symmetry
subgroup of bundle automorphisms acting on the principal fiber bundle P. Using the bundle
projection m: P — ¥ we get a symmetry operation of S on X. For simplicity we will assume that
all orbits of S are of the same type. If necessary we will have to decompose the base manifold into
several orbit bundles ¥y C X, where F' = S, is the isotropy subgroup of S consisting of elements
fixing a point x of the orbit bundle X () (isotropy subgroups for different points in ¥(p) are not
identical but conjugate to each other). This amounts to a special treatment of possible symmetry
axes or centers.

By restricting ourselves to one fixed orbit bundle we fix an isotropy subgroup F' < S up to
conjugacy, and we require that the action of S on ¥ is such that the orbits are given by S(z) = S/F
for all z € ¥. This will be the case if S is compact but also in most other cases of physical interest.
Moreover, we will have to assume later on that the coset space S/F is reductive [138, 139], i.e.,
that £S5 can be written as a direct sum £S = LF @ LF, with Adp(LF,) C LF,. If S is
semisimple, LF| is the orthogonal complement of LF with respect to the Cartan—Killing metric
on LS. Further examples are provided by freely acting symmetry groups, in which case we have
F = {1}, and semidirect products of the form S = N x F, where LF| = LN. The latter cases are
relevant for homogeneous and isotropic cosmological models.

The base manifold can be decomposed as ¥ = /S x S/F where ¥£/S = B C ¥ is the base
manifold of the orbit bundle and can be realized as a submanifold B of ¥ via a section in this
bundle. As already noted in the main text, the action of a symmetry group on space introduces a
partial background into the model. In particular, full diffeomorphism invariance is not preserved
but reduced to diffeomorphisms only on the reduced manifold B. To see what kind of partial
background we have in a model it is helpful to contrast the mathematical definition of symmetry
actions with the physical picture.

To specify an action of a group on a manifold one has to give, for each group element, a map
between space points satisfying certain conditions. Mathematically, each point is uniquely deter-
mined by labels, usually by coordinates in a chosen (local) coordinate system. The group action
can then be written down in terms of maps of the coordinate charts, and there are compatibility
conditions for maps expressed in different charts to ensure that the ensuing map on the manifold
is coordinate independent. If we have active diffeomorphism invariance, however, individual points
in space are not well-defined. This leads to the common view that geometrical observables such
as the area of a surface are, for physical purposes, not actually defined by integrating over a sub-
manifold simply in parameter form, but over subsets of space defined by the values of matter fields
[L71, 169]. Since matter fields are subject to diffeomorphisms just as the metric, area defined in
such a manner is diffeomorphism invariant.

Similarly, orbits of the group action are not to be regarded as fixed submanifolds, but as being
deformed by diffeomorphisms. Fixing a class of orbits filling the space manifold ¥ corresponds
to selecting a special coordinate system adapted to the symmetry. For instance, in a spherically
symmetric situation one usually chooses spherical coordinates (r,v,¢), where r > 0 labels the
orbits and ¥ and ¢ are angular coordinates and can be identified with some parameters of the
symmetry group SO(3). In a Euclidean space the orbits can be embedded as spheres S? of constant
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curvature. Applying a diffeomorphism, however, will deform the spheres and they are in general
only topological S2. Physically, the orbits can be specified as level surfaces of matter fields, similar
to specifying space points. This concept allows us to distinguish in a diffeomorphism invariant
manner between curves (such as edges of spin networks) that are tangential and curves that are
transversal to the group orbits.

It is, however, not possible to label single points in a given orbit in such a physical manner,
simply because we could not introduce the necessary matter fields without destroying the symmetry.
Thus we have to use the action of the symmetry group, which provides us with additional structure,
to label the points, e.g., by using the angular coordinates in the example above. A similar role is
played by the embedding of the reduced manifold B into 3 by choosing a section of the orbit bundle,
which provides a base point for each orbit (a north pole in the example of spherical symmetry).
This amounts to a partial fixing of the diffeomorphism invariance by allowing only diffeomorphisms
that respect the additional structure. The reduced diffeomorphism constraint will then in general
require only invariance with respect to diffeomorphisms of the manifold B.

In a reduced model, a partial fixing of the diffeomorphism invariance does not cause problems
because all fields are constant along the orbits anyway. However, if we study symmetric states
as generalized states of the full theory, as in Section 6, we inevitably have to break partially the
diffeomorphism invariance. The distributional evaluation of symmetric states and the dual action
of basic operators thus depends on the partial background provided by the symmetry.

A.2 Classification of symmetric principal fiber bundles

Fields that are invariant under the action of a symmetry group S on space X are defined by a set
of linear equations for invariant field components. Nevertheless, finding invariant fields in gauge
theories is not always straightforward since, in general, fields need to be invariant only up to
gauge transformations which depend on the symmetry transformation. An invariant connection,
for instance, satisfies the equation

s"A = g(s) 7" Ag(s) + g(s) " dg(s) (66)

with a local gauge transformation g(s) for each s € S. These gauge transformations are not
arbitrary since two symmetry transformations s; and ss applied one after another have to imply
a gauge transformation with g(sas1) related to g(s1) and g(s2). However, this does not simply
amount to a homomorphism property and allowed maps g: S — G are not easily determined by
group theory. Thus, even though for a known map g one simply has to solve a system of linear
equations for A, finding appropriate maps g can be difficult. In most cases, the equations would
not have any non-vanishing solution at all, which would certainly be insufficient for interesting
reduced field theories.

In the earlier physical literature, invariant connections and other fields have indeed been deter-
mined by trial and error [91], but the same problem has been solved in the mathematical literature
[138, 139, 82] in impressive generality. This uses the language of principal fiber bundles which
already provides powerful techniques. Moreover, the problem of solving one system of equations
for A and ¢(s) at the same time is split into two separate problems, which allows a more systematic
approach. The first step is to realize that a connection whose local 1-forms A on ¥ are invariant up
to gauge is equivalent to a connection 1-form w defined on the full fiber bundle P, which satisfies
the simple invariance conditions s*w = w for all s € S. This is indeed simpler to analyze since we
now have a set of linear equations for w alone. However, even though hidden in the notation, the
map g: S — G is still present. The invariance conditions for w defined on P are well-defined only
if we know a lift from the original action of S on the base manifold ¥ to the full bundle P. As with
maps g: S — G, there are several inequivalent choices for the lift which have to be determined.
The advantage of this procedure is that this can be done by studying symmetric principal fiber

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2005-11


http://www.livingreviews.org/lrr-2005-11

78 Martin Bojowald

bundles, i.e., principal fiber bundles carrying the action of a symmetry group, independently of
the behavior of connections. In a second step, one can then ask what form invariant connections
on a given symmetric principal fiber bundle have.

We now discuss the first step of determining lifts of the symmetry action of S from X to P.
Given a point x € ¥, the action of the isotropy subgroup F yields a map F: 7~ 1(z) — 7 1(x)
of the fiber over x, which commutes with the right action of G on the bundle. To each point
p € 7 !(z) we can assign a group homomorphism \,: F' — G defined by f(p) =: p- \,(f) for all
f € F. To verify this we first note that commutativity of the action of S < Aut(P) with right
multiplication of G’ on P implies that we have the conjugate homomorphism A, = Ad,-1 o A, for
a different point p’ = p - g in the same fiber:

Pd () =F-9)=f)-9=( XN(f)-g=p"-Adg-1 X, (f).

This yields

(fio f2)(p) = fi(p- Ap(f2)) = (P~ Ap(f2)) - Ady, ()1 Ap(f1) = - (Mp(f1) - Ap(f2))

demonstrating the homomorphism property. We thus obtain a map A\: P x F — G, (p, f) — Ap(f)
obeying the relation A,., = Adg—1 0 A,.
Given a fixed homomorphism A: F' — G, we can build the principal fiber subbundle

QA(B,Zx,mq) :={p € P : X\ = A} (67)
over the base manifold B, which as structure group has the centralizer
Zy:=ZgMF))={9g€G:gf=fg foral feA(F)}

of \(F') in G. P,p is the restricted fiber bundle over B. A conjugate homomorphism A" = Adg-10A
simply leads to an isomorphic fiber bundle.

The structure elements [\ and @ classify symmetric principal fiber bundles according to the
following theorem [82]:

Theorem 1 An S-symmetric principal fiber bundle P(X, G, ) with isotropy subgroup F < S of the
action of S on X is uniquely characterized by a conjugacy class [A] of homomorphisms \: F — G

together with o reduced bundle Q(X/S, Zg(M(F)),mq).
Given two groups F' and G we can make use of the relation [81]
Hom(F,G)/Ad 2 Hom(F,T(G))/W(G) (68)

in order to determine all conjugacy classes of homomorphisms A\: F' — G. Here, T(G) is a maximal
torus and W (G) the Weyl group of G. Different conjugacy classes correspond to different sectors
of the theory, which can be interpreted as having different topological charge. In spherically
symmetric electromagnetism, for instance, this is just magnetic charge [35, 66].

A.3 Classification of invariant connections

Now let w be an S-invariant connection on the symmetric bundle P classified by ([\], @), i.e.,
s*w = w for any s € S. After restriction, w induces a connection @ on the reduced bundle Q.
Because of S-invariance of w the reduced connection @ is a one-form on @ with values in the Lie
algebra of the reduced structure group. To see this, fix a point p € P and a vector v in T,P
such that m.v € 0.Ty(,) B, where o is the embedding of B into . Such a vector, which does not
have components along symmetry orbits, is fixed by the action of the isotropy group: df(v) = v.
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The pull back of w by f € F applied to v is by definition f*w,(v) = wsp)(df(v)) = wip)(v).
Now using the fact that f acts as gauge transformation in the fibers and observing the definition
of A, and the adjoint transformation of w, we obtain wy,(v) = Ady,(5)-1wp(v). By assumption
the connection w is S-invariant implying f*w,(v) = Ady, 5)-1wp(v) = wy(v) for all f € F. This
shows that wy,(v) € LZg(A\,(F)), and w can be restricted to a connection on the bundle @, with
structure group Zj.

Furthermore, using w we can construct the linear map A,: LS — LG, X — wp(X ) for any
p € P. Here, X is the vector field on P given by X(h) := d(exp(tX)*h)/dt|,—o for any X €
LS and h € C*(P,R). For X € LF the vector field X is a vertical vector field, and we have
Ap(X) = dA,(X), where dA: LF — LG is the derivative of the homomorphism defined above.
This component of A is therefore already given by the classifying structure of the principal fiber
bundle. Using a suitable gauge, A can be held constant along B. The remaining components
Aplzr, yield information about the invariant connection w. They are subject to the condition

Ap(Adf<X)) = Ad)\p(f)(Ap(X)) for f eF,XeLlS, (69)

which follows from the transformation of w under the adjoint representation and which provides a
set of equations determining the form of the components A.

Keeping only the information characterizing w we have, besides @, the scalar field QE: Q —
LG ® LFT, which is determined by A,|zr, and can be regarded as having dim £F| components
of LG-valued scalar fields. The reduced connection and the scalar field suffice to characterize an
invariant connection [82]:

Theorem 2 (Generalized Wang Theorem) Let P(3, G) be an S-symmetric principal fiber bun-
dle classified by ([A\], Q) according to Theorem 1, and let w be an S-invariant connection on P.

Then the connection w is uniquely classified by a reduced connection @ on @ and a scalar field
b: Q x LF, — LG obeying Equation (69).

In general, ¢~> transforms under some representation of the reduced structure group Zy: Its
values lie in the subspace of LG determined by Equation (69) and form a representation space
for all group elements of G (which act on A) whose action preserves the subspace. These are by
definition precisely elements of the reduced group. ~

The connection w can be reconstructed from its classifying structure (@, ¢) as follows: According
to the decomposition 3 = B x S/F we have

w=+wgp, (70)

where wg/p is given by A o /*fyc in a gauge depending on the (local) embedding ¢: S/F — S.
Here Onic is the Maurer—Cartan form on S taking values in £S. Through A, w depends on A and
0.
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B Examples

With these general results we can now quickly derive the form of invariant connections for the
cases studied in the main text.

B.1 Homogeneous models

In Bianchi models the transitive symmetry group acts freely on X, which implies that ¥ can
locally be identified with the group manifold S. The three generators of £S will be denoted as T7,
1 < I <3, with relations [T7,T;] = C}f,TK, where C’IIS are the structure constants of LS fulfilling
C{; =0 for class A models by definition. The Maurer—Cartan form on S is given by Oyic = w!T}
with left invariant one-forms w! on S, which fulfill the Maurer-Cartan equations

dw’ = —1CT gw’ A W™, (71)

Due to F = {1}, all homomorphisms \: F' — G are given by 1 — 1, and we can use the embedding
t=1id: S/F < S. An invariant connection then takes the form A = ggo Ovic = ~§Tiw1 = Al 1;da®
with matrices 7; generating £SU(2). The scalar field is given by ¢: £S — LG, Tr — ¢(T1) =: i
already in its final form, because condition (69) is empty for a trivial isotropy group.

Using left invariant vector fields X; obeying w’(X,) = ¢} and with Lie brackets [X, X,] =
CF X the momenta canonically conjugate to A% = ¢iw! can be written as E{ = ,/go p! X§ with
P! being canonically conjugate to ({)} Here, go = det(w!)? is the determinant of the left invariant
metric (go)ab := D, wiwi on ¥, which is used to provide the density weight of Ef'. The symplectic
structure can be derived from

1 .. 1 . Ve .
APz AL B! = d*z /g0 5w (X ) = —=bip!
87r’yG/2 THati 87wG/E Vg0 Orpiw (X) 8myG 1Pi >

to obtain _ _
{61.5]} = 8mGVod;07 (72)
with the volume Vj := fz d3z.,/go of ¥ measured with the invariant metric go.

It is convenient to absorb the coordinate volume Vj into the fields by redefining ¢4 := VOI/ i
and p! = 02/ 3]5{ . This makes the symplectic structure independent of V} in accordance with
background independence. These redefined variables automatically appear in holonomies and
fluxes through coordinate integrations.

B.2 Isotropic models

On Bianchi models, additional symmetries can be imposed, which corresponds to a further sym-
metry reduction and introduces non-trivial isotropy subgroups. These models with enhanced sym-
metry can be treated on an equal footing by writing the symmetry group as a semidirect product
S = N %, F, with the isotropy subgroup F' and the translational subgroup N, which is one of
the Bianchi groups. Composition in this group is defined as (n1, f1)(na, f2) := (n1p(f1)(n2), f1f2),
which depends on the group homomorphism p: F' — AutN into the automorphism group of N
(which will be denoted by the same letter as the representation on AutLN used below). Inverse ele-
ments are given by (n, f)~* = (p(f~1)(n~1), f~1). To determine the form of invariant connections
we have to compute the Maurer—Cartan form on S (using the usual notation):

Ol (n, f) = (. f)"td(n, f) = (p(f~H(n~Y), f~H)(dn, df)
— (p(f Y NN (dn), f1F) = (p(f 1) (0 dn), f1df)
= (PO, 052() (73)
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Here the Maurer—Cartan forms 91(\40 on N and 9 C on F' appear. We then choose an embeddlng

t: S/F = N — S, which can most easily be done as t: n — (n,1). Thus, L*Gl(\f()J = QMC, and a

reconstructed connection takes the form (b oL GMC = ¢§w1 T;, which is the same as for anisotropic

models before (where now w! are left invariant one-forms on the translation group N). However,
here ¢~) is constrained by equation (69) and we get only a subset as isotropic connections.

To solve Equation (69) we have to treat LRS (locally rotationally symmetric) models with a
single rotational symmetry and isotropic models separately. In the first case we choose LF = (13),
whereas in the second case we have LF = (11,72, 73) ((-) denotes the linear span). Equation (69)
can be written infinitesimally as

$ady, (Tr)) = adax(r) 6(T1) = [AA(T3), &(T7)]

(i = 3 for LRS, 1 < i < 3 for isotropy). The Ty are generators of LN = LF,, on which
the isotropy subgroup F acts by rotation, ad,,(T7) = €;;xTx. This is the derivative of the
representation p defining the semidirect product S: Conjugation on the left hand side of (69) is
Ad py(n,1) = (1, f)(n, 1)(1, f~1) = (p(f)(n),1), which follows from the composition in S.

Next, we have to determine the possible conjugacy classes of homomorphisms A: F' — G. For
LRS models their representatives are given by

Ax: U(1) — SU(2), exptrs +— expktrs

for k € Ng = {0,1,...} (as will be shown in detail below for spherically symmetric connections). For
the components ¢I of ¢ defined by qS(TI) ¢ITZ, Equation (69) takes the form e3;x ¢} = kesy; ngI
This has a non-trivial solution only for & = 1, in which case (i) can be written as

¢1 = ary + b, by = —bry + am, ¢3 = 73

with arbitrary numbers @, b, ¢ (the factors of 2% are introduced for the sake of normalization).
Their conjugate momenta take the form

Pp' = Lo +Po2), P = 3(—=PoT1 +PaT2),  P° = PeTs,

and the symplectic structure is given by

{9} = {b.p} = {25} = 8mGVo
and vanishes in all other cases. There is remaining gauge freedom from the reduced structure group
Zy 22 U(1) which rotates the pairs (a, ) and (j4, pp). Gauge invariant are then only /a2 + b2 and
its momentum (ap, + bps)/V @2 + b2.

In the case of isotropic models we have only two homomorphisms A\g: SU(2) — SU(2), f — 1
and A; = id up to conjugation (to simplify notation we use the same letters for the homomorphisms
as in the LRS case, which is justified by the fact that the LRS homomorphisms are restrictions
of those appearing here) Equatlon (69) takes the form 621K¢>K = 0 for A\g without non-trivial
solutions, and €;y K¢ K = €ilj (bl for A1. Each of the last equations has the same form as for LRS
models with k& = 1, and their solution is ¢} ¢t = ¢§% with an arbitrary ¢. In this case the conjugate
momenta can be written as p! = pdl, and we have the symplectic structure {¢,p} = & GAV.

Thus, in both cases there is a unique non-trivial sector, and no topological charge appears. The
symplectic structure can again be made independent of Vj by redeﬁning a:= Vol/ 3&, b:= Vol/ 3b7

= V01/3E and p, = V02/3[)a, Py = V(f/gﬁb, Pe = V02/3[)C, V2/3p If one computes the
isotropic reduction of a Bianchi IX metric following from the left invariant 1-forms of SU(2), one
obtains a closed Friedmann—Robertson—Walker metric with scale factor a = 2a = 2+/|p| (see, e.g.,

[36] for the calculation). Thus, we obtain the identification (18) used in isotropic loop cosmology.
(Such a normalization can only be obtained in curved models.)
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B.3 Spherical symmetry

In the generic case (i.e., outside a symmetry center) of spherical symmetry we have S = SU(2),
F =TU(1) = exp(r3) ((-) denotes the linear span), and the connection form can be gauged to be

Ag/p = (A(72)sin ) 4 A(73) cos ¥) dp + A(71)dd. (74)

Here (9, ) are (local) coordinates on S/F = S? and as usually we use the basis elements 7;
of LS. A(rs) is given by d\, whereas A(712) are the scalar field components. Equation (74)
contains as special cases the invariant connections found in [91]. These are gauge equivalent
by gauge transformations depending on the angular coordinates (9, ), i.e., they correspond to
homomorphisms A that are not constant on the orbits of the symmetry group.

In order to specify the general form (74) further, the first step is again to find all conjugacy
classes of homomorphisms A: F' = U(1) — SU(2) = G. To do so we can make use of Equation (68)
to which end we need the following information about SU(2) (see, e.g., [81]): The standard maximal
torus of SU(2) is given by

T(SU(2)) = {diag(z, 2~ 1) : 2 € U(1)} =2 U(1)

and the Weyl group of SU(2) is the permutation group of two elements, W (SU(2)) & S5, its
generator acting on T(SU(2)) by diag(z,z71) — diag(z71, 2).
All homomorphisms in Hom(U(1),T(SU(2))) are given by

A 2z diag(2F, 27F)

for any k € Z, and we have to divide out the action of the Weyl group leaving only the maps Ag,
k € Ny, as representatives of all conjugacy classes of homomorphisms. We see that spherically sym-
metric gravity has a topological charge taking values in Ny (but only if degenerate configurations
are allowed, as we will see below).

We will represent F' as the subgroup exp(r3) < SU(2) of the symmetry group S, and use the
homomorphisms A\p: exptrs — expktrs out of each conjugacy class. This leads to a reduced
structure group Zg (A, (F)) = exp(r3) =2 U(1) for k # 0 and Zg(Ao(F)) = SU(2) (k = 0; this is
the sector of manifestly invariant connections of [92]). The map A|-p is given by dA\x: (13) —
LG, 13 — k73, and the remaining components of A, which give us the scalar field, are determined
by A(71,2) € LG subject to Equation (69), which here can be written as

Ao adTS = add)\(TB) oA.
Using ad,, 71 = 7 and ad,, 72 = —71 we obtain
A(CL()TQ — boTl) = k‘(ao[Tg,A(Tl)] + bo[T3, A(Tg)]),

where agT + boTo, ag,bg € R is an arbitrary element of LF', . Since ag and by are arbitrary, this is
equivalent to the two equations

ks, A(11)] = A(72), k13, A(m2)] = —A(71).
A general ansatz
Am) =a1m +bime+ a3, A(12) = agmy + bamo + o713
with arbitrary parameters a;, b;, c; € R yields

k(ang — b17’1) = ao71 + b2T2 + Ca2T3,

k?(—ClQTQ =+ bQTl) =a1m + b1 +c173
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which have non-trivial solutions only if k¥ = 1, namely
bo=a1, ax=—-b;, c1=c2=0.

The configuration variables of the system are the above fields a,b,c: B — R of the U(1)-
connection form A = ¢(x) 73 dz on the one hand and the two scalar field components

Al(y: B — LSU(2),
1 0 —bla)—ia(2)\ _ (0 —w(a)
x— a(z)m + b(x)re = 3 (b(m) —ia(z) 0 ) _' (w(x) 0 )

on the other hand. Under a local U(1)-gauge transformation z(x) = exp(t(z)73) they transform as
¢— c+dt/dz and w(z) — exp(—it)w, which can be read off from

A 27 YAz 4+ 271z = A+ m3dt,

A(Ty) = 27 A(1)z = (exp(oit)w B ex%(it)w) .

In order to obtain a standard symplectic structure (see Equation (77) below), we reconstruct
the general invariant connection form
A(.’E, 19, QD) = Al(l‘)ng$ + (AQ ($)7'1 + Ag(z)’fg)dﬁ (75)
+ (Ag(x)1e — Az(x)71) sin ¥ dp + cos ¥ dp 73.

An invariant densitized triad field is analogously given by
(B",E°,E?) = (E'sin¥ 13, 4 sin9(E*my + B3m), 3 (E*ry — B37y)) (76)

with coefficients E! canonically conjugate to A; (E? and E® are non-vanishing only for k = 1).
The symplectic structure

{A1(x), B (y)} = 2¢G5{8(x, y) (77)
can be derived by inserting the invariant expressions into (87yG)™! [i, 3z Al B¢
Information about the topological charge k can be found by expressing the volume in terms of
the reduced triad coefficients E7: Using

€abe€ "V B EJ B}, = —2€qpe tr(E°[E”, E]) = §sin® OB ((E?)® + (E®)?) (78)

Vz/d?’x\/é
b

We can now see that in all the sectors with k # 1 the volume vanishes because then E? = E3 = 0.
All these degenerate sectors have to be rejected on physical grounds and we arrive at a unique
sector of invariant connections given by the parameter k = 1.

we have

€abc€ R EL E) E*

— o / de/[EV((B2)2 + (B9)2). (79)
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