10,809 research outputs found

    Galactic extinction and Abell clusters

    Get PDF
    In this paper, we present the results of comparing the angular distribution of Abell clusters with Galactic HI measurements. For most subsamples of clusters considered, their positions on the sky appear to be anti-correlated with respect to the distribution of HI column densities. The statistical significance of these observed anti-correlations is a function of both richness and distance class, with the more distant and/or richest systems having the highest significance (~3 sigma). The lower richness, nearby clusters appear to be randomly distributed compared to the observed Galactic HI column density.Comment: 5 pages, uuencoded compressed postscript file. Figures included. Accepted by MNRA

    Designing III-V Multijunction Solar Cells on Silicon

    Full text link
    Single junction Si solar cells dominate photovoltaics but are close to their efficiency limits. This paper presents ideal limiting efficiencies for tandem and triple junction multijunction solar cells subject only to the constraint of the Si bandgap and therefore recommending optimum cell structures departing from the single junction ideal. The use of III-V materials is considered, using a novel growth method capable of yielding low defect density III-V layers on Si. In order to evaluate the real potential of these proposed multijunction designs, a quantitative model is presented, the strength of which is the joint modelling of external quantum efficiency and current-voltage characteristics using the same parameters. The method yields a single parameter fit in terms of the Shockley-Read-Hall lifetime. This model is validated by fitting experimental data of external quantum efficiency, dark current, and conversion efficiency of world record tandem and triple junction cells under terrestrial solar spectra without concentration. We apply this quantitative model to the design of tandem and triple junction solar cells, yielding cell designs capable of reaching efficiencies without concentration of 32% for the best tandem cell and 36% for the best triple junction cell. This demonstrates that efficiencies within a few percent of world records are realistically achievable without the use of concentrating optics, with growth methods being developed for multijunction cells combining III-V and Si materials.Comment: Preprint of the paper submitted to the journal Progress in Photovoltaics, selected by the Executive Committee of the 28th EU PVSEC 2013 for submission to Progress in Photovoltaics. 10 pages, 7 figure

    A new source detection algorithm using FDR

    Get PDF
    The False Discovery Rate (FDR) method has recently been described by Miller et al (2001), along with several examples of astrophysical applications. FDR is a new statistical procedure due to Benjamini and Hochberg (1995) for controlling the fraction of false positives when performing multiple hypothesis testing. The importance of this method to source detection algorithms is immediately clear. To explore the possibilities offered we have developed a new task for performing source detection in radio-telescope images, Sfind 2.0, which implements FDR. We compare Sfind 2.0 with two other source detection and measurement tasks, Imsad and SExtractor, and comment on several issues arising from the nature of the correlation between nearby pixels and the necessary assumption of the null hypothesis. The strong suggestion is made that implementing FDR as a threshold defining method in other existing source-detection tasks is easy and worthwhile. We show that the constraint on the fraction of false detections as specified by FDR holds true even for highly correlated and realistic images. For the detection of true sources, which are complex combinations of source-pixels, this constraint appears to be somewhat less strict. It is still reliable enough, however, for a priori estimates of the fraction of false source detections to be robust and realistic.Comment: 17 pages, 7 figures, accepted for publication by A

    Linear laser diode arrays for improvement in optical disk recording for space stations

    Get PDF
    The design and fabrication of individually addressable laser diode arrays for high performance magneto-optic recording systems are presented. Ten diode arrays with 30 mW cW light output, linear light vs. current characteristics and single longitudinal mode spectrum were fabricated using channel substrate planar (CSP) structures. Preliminary results on the inverse CSP structure, whose fabrication is less critically dependent on device parameters than the CSP, are also presented. The impact of systems parameters and requirements, in particular, the effect of feedback on laser design is assessed, and techniques to reduce feedback or minimize its effect on systems performance, including mode-stabilized structures, are evaluated

    Design and commissioning of a timestamp-based data acquisition system for the DRAGON recoil mass separator

    Full text link
    The DRAGON recoil mass separator at TRIUMF exists to study radiative proton and alpha capture reactions, which are important in a variety of astrophysical scenarios. DRAGON experiments require a data acquisition system that can be triggered on either reaction product (γ\gamma ray or heavy ion), with the additional requirement of being able to promptly recognize coincidence events in an online environment. To this end, we have designed and implemented a new data acquisition system for DRAGON which consists of two independently triggered readouts. Events from both systems are recorded with timestamps from a 2020 MHz clock that are used to tag coincidences in the earliest possible stage of the data analysis. Here we report on the design, implementation, and commissioning of the new DRAGON data acquisition system, including the hardware, trigger logic, coincidence reconstruction algorithm, and live time considerations. We also discuss the results of an experiment commissioning the new system, which measured the strength of the Ec.m.=1113E_{\text{c}.\text{m}.} = 1113 keV resonance in the 20^{20}Ne(p,γ)21\left(p, \gamma \right)^{21}Na radiative proton capture reaction.Comment: 11 pages, 7 figures, accepted for publication in EPJ A "tools for experiment and theory

    Multiscale approaches to high efficiency photovoltaics

    Full text link
    While renewable energies are achieving parity around the globe, efforts to reach higher solar cell efficiencies becomes ever more difficult as they approach the limiting efficiency. The so-called third generation concepts attempt to break this limit through a combination of novel physical processes and new materials and concepts in organic and inorganic systems. Some examples of semi-empirical modelling in the field are reviewed, in particular for multispectral solar cells on silicon (french ANR project MULTISOLSI). Their achievements are outlined, and the limits of these approaches shown. This introduces the main topic of this contribution, which is the use of multiscale experimental and theoretical techniques to go beyond the semi-empirical understanding of these systems. This approach has already led to great advances at modelling which have led to modelling software which is widely known. Yet a survey of the topic reveals a fragmentation of efforts across disciplines, firstly, such as organic and inorganic fields, but also between the high efficiency concepts such as hot carrier cells and intermediate band concepts. We show how this obstacle to the resolution of practical research obstacles may be lifted by inter-disciplinary cooperation across length scales, and across experimental and theoretical fields, and finally across materials systems. We present a European COST Action MultiscaleSolar kicking off in early 2015 which brings together experimental and theoretical partners in order to develop multiscale research in organic and inorganic materials. The goal of this defragmentation and interdisciplinary collaboration is to develop understanding across length scales which will enable the full potential of third generation concepts to be evaluated in practise, for societal and industrial applications.Comment: Draft paper accompanying a plenary presentation to the World Renewable Energy Conference WREC 2015, June 2015, Bucharest. In press (IOP

    Improving the Reliability and Modal Stability of High Power 870 nm AlGaAs CSP Laser Diodes for Applications to Free Space Communication Systems

    Get PDF
    The operating characteristics (power-current, beam divergence, etc.) and reliability assessment of high-power CSP lasers is discussed. The emission wavelength of these lasers was optimized at 860 to 880 nm. The operational characteristics of a new laser, the inverse channel substrate planar (ICSP) laser, grown by metalorganic chemical vapor deposition (MOCVD), is discussed and the reliability assessment of this laser is reported. The highlights of this study include a reduction in the threshold current value for the laser to 15 mA and a degradation rate of less than 2 kW/hr for the lasers operating at 60 mW of peak output power

    Microwave monolithic integrated circuit development for future spaceborne phased array antennas

    Get PDF
    The development of fully monolithic gallium arsenide (GaAs) receive and transmit modules suitable for phased array antenna applications in the 30/20 gigahertz bands is presented. Specifications and various design approaches to achieve the design goals are described. Initial design and performance of submodules and associated active and passive components are presented. A tradeoff study summary is presented highlighting the advantages of distributed amplifier approach compared to the conventional single power source designs
    corecore