1,375 research outputs found

    Triterpenoids

    Get PDF
    This review covers the isolation and structure determination of triterpenoids reported during 2012 including squalene derivatives, lanostanes, holostanes, cycloartanes, cucurbitanes, dammaranes, euphanes, tirucallanes, tetranortriterpenoids, quassinoids, lupanes, oleananes, friedelanes, ursanes, hopanes, serratanes, isomalabaricanes and saponins; 348 references are cited

    The Stability of a Nonlinear, Time-Varying Control System

    Get PDF
    This thesis investigates the stability of a class of nonlinear, time-varying control systems using the Second Method of Liapunov. A recent investigation of this subject was done by Dr. Z. V. Rekasius when he presented the sufficient conditions for stability for a feedback system containing a single nonlinear, time-varying element whose input-output characteristic is contained in a finite sector. This stability criterion developed by Dr. Rekasius is used to extend the region of stability for a class of nonlinear, time-varying systems represented by the equations ẋ = A x + b f(σ,t) σ = cTx where x is an n-vector which represents the state of the system, A is an asymptotically stable n by n constant matrix, b and c are n-vectors, while U and f(,t) are the input-output, respectively, of the nonlinear, time-varying element. Liapunov’s second (direct) method is used in the iv stability analysis of this system. This method enables one to prove that a system is stable if a function V = V(x1,x2…xn,t) can be found which, together with its time derivative, satisfies the requirements of Liapunov\u27 s stability theorems. A particular form of the Liapunov function, V, first proposed by Lure is assumed. By constraining the time derivative of the Liapunov function to have a particular form conditions for a stability criterion are developed and presented in the form of a theorem. The conditions of the theorem are designated as the Improved Criterion and the Integral Constraint. The Integral Constraint places restrictions on the input and output of the nonlinear, time-varying element while the Improved Criterion is used to calculate the maximum value of gain that the closed loop system may assume and still guarantee stability for the closed loop system. The method of this thesis can be used to find the sufficient conditions for stability and boundedness for closed loop systems containing a single nonlinear, time-varying element by a systematic approach. This approach is particularly useful since it applies the stability criterion developed for this class of systems in its most general form thus yielding the maximum gain predictable from the theorem

    Revised structure of haemoventosin

    Get PDF
    The structure of the lichen pigment haemoventosin has been revised to 3,4,6,9-tetrahydro-5,10-dihydroxy-7-methoxy-3S-methyl-1,6,9-trioxo-1H-naphtho-[2,3-c]pyran (3), mainly on the basis of long-range δC/δH correlations observed in 2D HMBC NMR experiments and long-range δH/δD isotope effects observed in partial deuteriation experiments with 10-O-acetylhaemoventosin; ortho- and para-quinonoid structures were distinguished by means of the transacetylation inferred in the sodium dithionite reduction of 10-O-acetylhaemoventosin

    Systems-based decomposition schemes for the approximate solution of multi-term fractional differential equations

    Get PDF
    We give a comparison of the efficiency of three alternative decomposition schemes for the approximate solution of multi-term fractional differential equations using the Caputo form of the fractional derivative. The schemes we compare are based on conversion of the original problem into a system of equations. We review alternative approaches and consider how the most appropriate numerical scheme may be chosen to solve a particular equation

    Loop Shaping Control Design for a Supersonic Propulsion System Model Using Quantitative Feedback Theory (QFT) Specifications and Bounds

    Get PDF
    This paper covers the propulsion system component modeling and controls development of an integrated mixed compression inlet and turbojet engine that will be used for an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. Using previously created nonlinear component-level propulsion system models, a linear integrated propulsion system model and loop shaping control design have been developed. The design includes both inlet normal shock position control and jet engine rotor speed control for a potential supersonic commercial transport. A preliminary investigation of the impacts of the aero-elastic effects on the incoming flow field to the propulsion system are discussed, however, the focus here is on developing a methodology for the propulsion controls design that prevents unstart in the inlet and minimizes the thrust oscillation experienced by the vehicle. Quantitative Feedback Theory (QFT) specifications and bounds, and aspects of classical loop shaping are used in the control design process. Model uncertainty is incorporated in the design to address possible error in the system identification mapping of the nonlinear component models into the integrated linear model

    Triterpenoids

    Get PDF
    Covering: 2013. Previous review: Nat. Prod. Rep., 2015, 29, 1028–1065 This review covers the isolation and structure determination of triterpenoids reported during 2013 including squalene derivatives, lanostanes, holostanes, cycloartanes, cucurbitanes, dammaranes, euphanes, tirucallanes, tetranortriterpenoids, quassinoids, lupanes, oleananes, friedelanes, ursanes, hopanes, serratanes, isomalabaricanes and saponins; 350 references are cited

    Bioactive flavanones from Luma chequen

    Get PDF
    A bioassay-guided chemical study of a methanolic extract of fresh leaves of Luma chequen led to the isolation of lumaflavanones A (1), B (2) and C (3) whose structures are proposed on the basis of NMR spectroscopic data. The structure of lumaflavanone A was confirmed by X-ray analysis. Antifeedant (Spodoptera littoralis), brine shrimp (Artemia salina) and fungistatic (Botrytis cinerea) bioassays showed that while 3 was the most active in the first two assays the mixture of 1 and 2 was more effective as a fungistatic

    Enhanced Engine Performance During Emergency Operation Using a Model-Based Engine Control Architecture

    Get PDF
    This paper discusses the design and application of model-based engine control (MBEC) for use during emergency operation of the aircraft. The MBEC methodology is applied to the Commercial Modular Aero-Propulsion System Simulation 40k (CMAPSS40k) and features an optimal tuner Kalman Filter (OTKF) to estimate unmeasured engine parameters, which can then be used for control. During an emergency scenario, normally-conservative engine operating limits may be relaxed to increase the performance of the engine and overall survivability of the aircraft; this comes at the cost of additional risk of an engine failure. The MBEC architecture offers the advantage of estimating key engine parameters that are not directly measureable. Estimating the unknown parameters allows for tighter control over these parameters, and on the level of risk the engine will operate at. This will allow the engine to achieve better performance than possible when operating to more conservative limits on a related, measurable parameter

    Model-Based Engine Control Architecture with an Extended Kalman Filter

    Get PDF
    This paper discusses the design and implementation of an extended Kalman filter (EKF) for model-based engine control (MBEC). Previously proposed MBEC architectures feature an optimal tuner Kalman Filter (OTKF) to produce estimates of both unmeasured engine parameters and estimates for the health of the engine. The success of this approach relies on the accuracy of the linear model and the ability of the optimal tuner to update its tuner estimates based on only a few sensors. Advances in computer processing are making it possible to replace the piece-wise linear model, developed off-line, with an on-board nonlinear model running in real-time. This will reduce the estimation errors associated with the linearization process, and is typically referred to as an extended Kalman filter. The nonlinear extended Kalman filter approach is applied to the Commercial Modular Aero-Propulsion System Simulation 40,000 (C-MAPSS40k) and compared to the previously proposed MBEC architecture. The results show that the EKF reduces the estimation error, especially during transient operation
    • …
    corecore