76 research outputs found

    Interaction of Cryptococcus neoformans Rim101 and Protein Kinase A Regulates Capsule

    Get PDF
    Cryptococcus neoformans is a prevalent human fungal pathogen that must survive within various tissues in order to establish a human infection. We have identified the C. neoformans Rim101 transcription factor, a highly conserved pH-response regulator in many fungal species. The rim101Δ mutant strain displays growth defects similar to other fungal species in the presence of alkaline pH, increased salt concentrations, and iron limitation. However, the rim101Δ strain is also characterized by a striking defect in capsule, an important virulence-associated phenotype. This capsular defect is likely due to alterations in polysaccharide attachment to the cell surface, not in polysaccharide biosynthesis. In contrast to many other C. neoformans capsule-defective strains, the rim101Δ mutant is hypervirulent in animal models of cryptococcosis. Whereas Rim101 activation in other fungal species occurs through the conserved Rim pathway, we demonstrate that C. neoformans Rim101 is also activated by the cAMP/PKA pathway. We report here that C. neoformans uses PKA and the Rim pathway to regulate the localization, activation, and processing of the Rim101 transcription factor. We also demonstrate specific host-relevant activating conditions for Rim101 cleavage, showing that C. neoformans has co-opted conserved signaling pathways to respond to the specific niche within the infected host. These results establish a novel mechanism for Rim101 activation and the integration of two conserved signaling cascades in response to host environmental conditions

    Defects in intracellular trafficking of fungal cell wall synthases lead to aberrant host immune recognition

    Get PDF
    Acknowledgments We acknowledge Jeanette Wagener and Louise Walker for performing the HPAEC-PAD analysis and Neil Gow for providing access to the Dionex HPAEC-PAD instrumentation. We thank Mike Cook and the Duke University Cancer Center Flow Cytometry Shared Resource for assistance with the flow cytometry. We also acknowledge Michelle Plue and the Duke University Shared Materials Institute Facility for performing the transmission electron microscopy. We thank Marcel Wu¨thrich for providing the MyD88-/-and TLR2/4-/- mice, and Mari Shinohara and Elizabeth Deerhake for providing the Dectin-1-/- mice. Funding: These experiments were supported by a National Institutes of Health grant awarded to JAA and FLW, Jr. (R01 AI074677, https://grants.nih.gov/grants/oer.html). CM and colleagues Jeanette Wagener, Louise Walker, Neil Gow were supported by the Wellcome Trust Strategic Award in Medical Mycology and Fungal Immunology (097377, https://wellcome.ac.uk), Wellcome Trust Senior Investigator Award (101873) and the MRC Centre for Medical Mycology (MR/N006364/1, https://www.abdn.ac.uk/cmm/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    A fungal lytic polysaccharide monooxygenase is required for cell wall integrity, thermotolerance, and virulence of the fungal human pathogen Cryptococcus neoformans

    Get PDF
    Fungi often adapt to environmental stress by altering their size, shape, or rate of cell division. These morphological changes require reorganization of the cell wall, a structural feature external to the cell membrane composed of highly interconnected polysaccharides and glycoproteins. Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that are typically secreted into the extracellular space to catalyze initial oxidative steps in the degradation of complex biopolymers such as chitin and cellulose. However, their roles in modifying endogenous microbial carbohydrates are poorly characterized. The CEL1 gene in the human fungal pathogen Cryptococcus neoformans (Cn) is predicted by sequence homology to encode an LPMO of the AA9 enzyme family. The CEL1 gene is induced by host physiological pH and temperature, and it is primarily localized to the fungal cell wall. Targeted mutation of the CEL1 gene revealed that it is required for the expression of stress response phenotypes, including thermotolerance, cell wall integrity, and efficient cell cycle progression. Accordingly, a cel1Δ deletion mutant was avirulent in two models of C. neoformans infection. Therefore, in contrast to LPMO activity in other microorganisms that primarily targets exogenous polysaccharides, these data suggest that CnCel1 promotes intrinsic fungal cell wall remodeling events required for efficient adaptation to the host environment

    Network analysis of sea turtle movements and connectivity: A tool for conservation prioritization

    Get PDF
    Aim: Understanding the spatial ecology of animal movements is a critical element in conserving long-lived, highly mobile marine species. Analyzing networks developed from movements of six sea turtle species reveals marine connectivity and can help prioritize conservation efforts. Location: Global. Methods: We collated telemetry data from 1235 individuals and reviewed the literature to determine our dataset's representativeness. We used the telemetry data to develop spatial networks at different scales to examine areas, connections, and their geographic arrangement. We used graph theory metrics to compare networks across regions and species and to identify the role of important areas and connections. Results: Relevant literature and citations for data used in this study had very little overlap. Network analysis showed that sampling effort influenced network structure, and the arrangement of areas and connections for most networks was complex. However, important areas and connections identified by graph theory metrics can be different than areas of high data density. For the global network, marine regions in the Mediterranean had high closeness, while links with high betweenness among marine regions in the South Atlantic were critical for maintaining connectivity. Comparisons among species-specific networks showed that functional connectivity was related to movement ecology, resulting in networks composed of different areas and links. Main conclusions: Network analysis identified the structure and functional connectivity of the sea turtles in our sample at multiple scales. These network characteristics could help guide the coordination of management strategies for wide-ranging animals throughout their geographic extent. Most networks had complex structures that can contribute to greater robustness but may be more difficult to manage changes when compared to simpler forms. Area-based conservation measures would benefit sea turtle populations when directed toward areas with high closeness dominating network function. Promoting seascape connectivity of links with high betweenness would decrease network vulnerability.Fil: Kot, Connie Y.. University of Duke; Estados UnidosFil: Åkesson, Susanne. Lund University; SueciaFil: Alfaro Shigueto, Joanna. Universidad Cientifica del Sur; Perú. University of Exeter; Reino Unido. Pro Delphinus; PerúFil: Amorocho Llanos, Diego Fernando. Research Center for Environmental Management and Development; ColombiaFil: Antonopoulou, Marina. Emirates Wildlife Society-world Wide Fund For Nature; Emiratos Arabes UnidosFil: Balazs, George H.. Noaa Fisheries Service; Estados UnidosFil: Baverstock, Warren R.. The Aquarium and Dubai Turtle Rehabilitation Project; Emiratos Arabes UnidosFil: Blumenthal, Janice M.. Cayman Islands Government; Islas CaimánFil: Broderick, Annette C.. University of Exeter; Reino UnidoFil: Bruno, Ignacio. Instituto Nacional de Investigaciones y Desarrollo Pesquero; ArgentinaFil: Canbolat, Ali Fuat. Hacettepe Üniversitesi; Turquía. Ecological Research Society; TurquíaFil: Casale, Paolo. Università degli Studi di Pisa; ItaliaFil: Cejudo, Daniel. Universidad de Las Palmas de Gran Canaria; EspañaFil: Coyne, Michael S.. Seaturtle.org; Estados UnidosFil: Curtice, Corrie. University of Duke; Estados UnidosFil: DeLand, Sarah. University of Duke; Estados UnidosFil: DiMatteo, Andrew. CheloniData; Estados UnidosFil: Dodge, Kara. New England Aquarium; Estados UnidosFil: Dunn, Daniel C.. University of Queensland; Australia. The University of Queensland; Australia. University of Duke; Estados UnidosFil: Esteban, Nicole. Swansea University; Reino UnidoFil: Formia, Angela. Wildlife Conservation Society; Estados UnidosFil: Fuentes, Mariana M. P. B.. Florida State University; Estados UnidosFil: Fujioka, Ei. University of Duke; Estados UnidosFil: Garnier, Julie. The Zoological Society of London; Reino UnidoFil: Godfrey, Matthew H.. North Carolina Wildlife Resources Commission; Estados UnidosFil: Godley, Brendan J.. University of Exeter; Reino UnidoFil: González Carman, Victoria. Instituto National de Investigación y Desarrollo Pesquero; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Harrison, Autumn Lynn. Smithsonian Institution; Estados UnidosFil: Hart, Catherine E.. Grupo Tortuguero de las Californias A.C; México. Investigacion, Capacitacion y Soluciones Ambientales y Sociales A.C; MéxicoFil: Hawkes, Lucy A.. University of Exeter; Reino UnidoFil: Hays, Graeme C.. Deakin University; AustraliaFil: Hill, Nicholas. The Zoological Society of London; Reino UnidoFil: Hochscheid, Sandra. Stazione Zoologica Anton Dohrn; ItaliaFil: Kaska, Yakup. Dekamer—Sea Turtle Rescue Center; Turquía. Pamukkale Üniversitesi; TurquíaFil: Levy, Yaniv. University Of Haifa; Israel. Israel Nature And Parks Authority; IsraelFil: Ley Quiñónez, César P.. Instituto Politécnico Nacional; MéxicoFil: Lockhart, Gwen G.. Virginia Aquarium Marine Science Foundation; Estados Unidos. Naval Facilities Engineering Command; Estados UnidosFil: López-Mendilaharsu, Milagros. Projeto TAMAR; BrasilFil: Luschi, Paolo. Università degli Studi di Pisa; ItaliaFil: Mangel, Jeffrey C.. University of Exeter; Reino Unido. Pro Delphinus; PerúFil: Margaritoulis, Dimitris. Archelon; GreciaFil: Maxwell, Sara M.. University of Washington; Estados UnidosFil: McClellan, Catherine M.. University of Duke; Estados UnidosFil: Metcalfe, Kristian. University of Exeter; Reino UnidoFil: Mingozzi, Antonio. Università Della Calabria; ItaliaFil: Moncada, Felix G.. Centro de Investigaciones Pesqueras; CubaFil: Nichols, Wallace J.. California Academy Of Sciences; Estados Unidos. Center For The Blue Economy And International Environmental Policy Program; Estados UnidosFil: Parker, Denise M.. Noaa Fisheries Service; Estados UnidosFil: Patel, Samir H.. Coonamessett Farm Foundation; Estados Unidos. Drexel University; Estados UnidosFil: Pilcher, Nicolas J.. Marine Research Foundation; MalasiaFil: Poulin, Sarah. University of Duke; Estados UnidosFil: Read, Andrew J.. Duke University Marine Laboratory; Estados UnidosFil: Rees, ALan F.. University of Exeter; Reino Unido. Archelon; GreciaFil: Robinson, David P.. The Aquarium and Dubai Turtle Rehabilitation Project; Emiratos Arabes UnidosFil: Robinson, Nathan J.. Fundación Oceanogràfic; EspañaFil: Sandoval-Lugo, Alejandra G.. Instituto Politécnico Nacional; MéxicoFil: Schofield, Gail. Queen Mary University of London; Reino UnidoFil: Seminoff, Jeffrey A.. Noaa National Marine Fisheries Service Southwest Regional Office; Estados UnidosFil: Seney, Erin E.. University Of Central Florida; Estados UnidosFil: Snape, Robin T. E.. University of Exeter; Reino UnidoFil: Sözbilen, Dogan. Dekamer—sea Turtle Rescue Center; Turquía. Pamukkale University; TurquíaFil: Tomás, Jesús. Institut Cavanilles de Biodiversitat I Biologia Evolutiva; EspañaFil: Varo Cruz, Nuria. Universidad de Las Palmas de Gran Canaria; España. Ads Biodiversidad; España. Instituto Canario de Ciencias Marinas; EspañaFil: Wallace, Bryan P.. University of Duke; Estados Unidos. Ecolibrium, Inc.; Estados UnidosFil: Wildermann, Natalie E.. Texas A&M University; Estados UnidosFil: Witt, Matthew J.. University of Exeter; Reino UnidoFil: Zavala Norzagaray, Alan A.. Instituto politecnico nacional; MéxicoFil: Halpin, Patrick N.. University of Duke; Estados Unido

    Global trends in myopia management attitudes and strategies in clinical practice – 2019 Update

    Get PDF
    Purpose: A survey in 2015 identified a high level of eye care practitioner concern about myopia with a reported moderately high level of activity, but the vast majority still prescribed single vision interventions to young myopes. This research aimed to update these findings 4 years later. Methods: A self-administrated, internet-based questionnaire was distributed in eight languages, through professional bodies to eye care practitioners globally. The questions examined: awareness of increasing myopia prevalence, perceived efficacy of available strategies and adoption levels of such strategies, and reasons for not adopting specific strategies. Results: Of the 1336 respondents, concern was highest (9.0 ± 1.6; p < 0.001) in Asia and lowest (7.6 ± 2.2; p < 0.001) in Australasia. Practitioners from Asia also considered their clinical practice of myopia control to be the most active (7.7 ± 2.3; p < 0.001), the North American practitioners being the least active (6.3 ± 2.9; p < 0.001). Orthokeratology was perceived to be the most effective method of myopia control, followed by pharmaceutical approaches and approved myopia control soft contact lenses (p < 0.001). Although significant intra-regional differences existed, overall, most practitioners did not consider single-vision distance under-correction to be an effective strategy for attenuating myopia progression (79.6 %), but prescribed single vision spectacles or contact lenses as the primary mode of correction for myopic patients (63.6 ± 21.8 %). The main justifications for their reluctance to prescribe alternatives to single vision refractive corrections were increased cost (20.6 %) and inadequate information (17.6 %). Conclusions: While practitioner concern about myopia and the reported level of activity have increased over the last 4 years, the vast majority of eye care clinicians still prescribe single vision interventions to young myopes. With recent global consensus evidence-based guidelines having been published, it is hoped that this will inform the practice of myopia management in future

    PAK Kinases Ste20 and Pak1 Govern Cell Polarity at Different Stages of Mating in Cryptococcus neoformans

    Get PDF
    Sexual identity and mating are linked to virulence of the fungal pathogen Cryptococcus neoformans. Cells of the α mating type are more prevalent and can be more virulent than a cells, and basidiospores are thought to be the infectious propagule. Mating in C. neoformans involves cell-cell fusion and the generation of dikaryotic hyphae, processes that involve substantial changes in cell polarity. Two p21-activated kinase (PAK) kinases, Pak1 and Ste20, are required for both mating and virulence in C. neoformans. We show here that Ste20 and Pak1 play crucial roles in polarized morphogenesis at different steps during mating: Pak1 functions during cell fusion, whereas Ste20 fulfills a distinct morphogenic role and is required to maintain polarity in the heterokaryotic mating filament. In conclusion, our studies demonstrate that PAK kinases are necessary for polar growth during mating and that polarity establishment is necessary for mating and may contribute to virulence of C. neoformans
    corecore