1,213 research outputs found

    Magnetic field of Jupiter: A generalized inverse approach

    Get PDF
    The estimation of planetary magnetic fields from observations of the magnetic field gathered along a spacecraft flyby trajectory is examined with the aid of generalized inverse techniques, with application to the internal magnetic field of Jupiter. Model nonuniqueness resulting from the limited spatial extent of the observations and noise on the data is explored and quantitative estimates of the model parameter resolution are found. The presence of a substantial magnetic field of external origin due to the currents flowing in the Jovian magnetodisc is found to be an important source of error in estimates of the internal Jovian field, and new models explicitly incorporating these currents are proposed. New internal field models are derived using the vector helium magnetometer observations and the high field fluxgate observations of Pioneer 11, and knowledge of the external current system gained from the Pioneer 10 and Voyagers 1 and 2 encounters

    Jovimagnetic secular variation

    Get PDF
    Long term variations of a planetary magnetic field are one of the few observables available in the study of planetary interiors and dynamo theory. While variations of the geomagnetic field were accessible to direct measurement for centuries, knowledge of the secular variations of other planetary dynamos is limited. New limits on Jovimagnetic secular variations were found by comparison of a Jovian internal field model obtained from the Voyager 1 magnetic field observations at epoch 1979.2 with the epoch 1974.9 Pioneer 11 O4 model. No significant secular variation of either the magnitude or position of the Jovidipole is found for the years 1974.9 through 1979.2, although a small Earth-like variation cannot be ruled out

    3D reconstruction of motor pathways from tract tracing rhesus monkey

    Full text link
    Magnetic resonance imaging (MRI) has transformed the world of non-invasive imaging for diagnostic purposes. Modern techniques such as diffusion weighted imaging (DWI), diffusion tensor imaging (DTI), and diffusion spectrum imaging (DSI) have been used to reconstruct fiber pathways of the brain - providing a graphical picture of the so-called "connectome." However, there exists controversy in the literature as to the accuracy of the diffusion tractography reconstruction. Although various attempts at histological validation been attempted, there is still no 3D histological pathway validation of the fiber bundle trajectories seen in diffusion MRI. Such a validation is necessary in order to show the viability of current DSI tractography techniques in the ultimate goal for clinical diagnostic application. This project developed methods to provide this 3D histological validation using the rhesus monkey motor pathway as a model system. By injecting biotinylated dextran amine (BDA) tract tracer into the hand area of primary motor cortex, brain section images were reconstructed to create 3D fiber pathways labeled at the axonal level. Using serial coronal brain sections, the BDA label was digitized with a high resolution digital camera to create image montages of the fiber pathway with individual sections spaced at 1200 micron intervals through the brain. An MRI analysis system, OSIRX, was then used to reconstruct these sections into a 3D volume. This is an important technical step toward merging the BDA fiber tract histology with diffusion MRI tractography of the same brain, enabling identification of the valid and inaccurate aspects of diffusion fiber reconstruction. This will ultimately facilitate the use of diffusion MRI to quantify tractography, non-invasively and in vivo, in the human brain

    A New Model of Jupiter's Magnetic Field from Juno's First Nine Orbits

    Get PDF
    A spherical harmonic model of the magnetic field of Jupiter is obtained from vector magnetic field observations acquired by the Juno spacecraft during its first nine polar orbits about the planet. Observations acquired during eight of these orbits provide the first truly global coverage of Jupiter's magnetic field with a coarse longitudinal separation of ~45 deg between perijoves. The magnetic field is represented with a degree 20 spherical harmonic model for the planetary ("internal") field, combined with a simple model of the magnetodisc for the field ("external") due to distributed magnetospheric currents. Partial solution of the underdetermined inverse problem using generalized inverse techniques yields a model ("Juno Reference Model through Perijove 9") of the planetary magnetic field with spherical harmonic coefficients well determined through degree and order 10, providing the first detailed view of a planetary dynamo beyond Earth

    Currents in Saturn's magnetosphere

    Get PDF
    A model of Saturn's magnetospheric magnetic field is obtained from the Voyager 1 and 2 observations. A representation consisting of the Z sub 3 zonal harmonic model of Saturn's planetary magnetic field together with an explicit model of Saturn's planetary magnetic field and a model of the equatorial ring current fits the observations well within r 20 R sub S, with the exception of data obtained during the Voyager 2 inbound pass

    The Z3 model of Saturns magnetic field and the Pioneer 11 vector helium magnetometer observations

    Get PDF
    Magnetic field observations obtained by the Pioneer 11 vector helium magnetometer are compared with the Z(sub 3) model magnetic field. These Pioneer 11 observations, obtained at close-in radial distances, constitute an important and independent test of the Z(sub 3) zonal harmonic model, which was derived from Voyager 1 and Voyager 2 fluxgate magnetometer observations. Differences between the Pioneer 11 magnetometer and the Z(sub 3) model field are found to be small (approximately 1%) and quantitatively consistent with the expected instrumental accuracy. A detailed examination of these differences in spacecraft payload coordinates shows that they are uniquely associated with the instrument frame of reference and operation. A much improved fit to the Pioneer 11 observations is obtained by rotation of the instrument coordinate system about the spacecraft spin axis by 1.4 degree. With this adjustment, possibly associated with an instrumental phase lag or roll attitude error, the Pioneer 11 vector helium magnetometer observations are fully consistent with the Voyager Z(sub 3) model

    Voyager 1 assessment of Jupiter's planetary magnetic field

    Get PDF
    An estimate of Jupiter's planetary magnetic field is obtained from the Voyager 1 observations of the Jovian magnetosphere. An explicit model for the magnetodisc current system is combined with a spherical harmonic model of the planetary field with both sets of parameters determined simultaneously using a nonlinear generalized inverse methodology. The resulting model fits the observations extremely well throughout the analysis interval (r 20 Jovian radii). The Jovian internal field model obtained from the Voyager 1 data is very similar to the octopole Pioneer 11 models. The best fitting magnetodisc lies in the centrifugal equator, 2/3 of the way between the rotational and magnetic equators, as appropriate for centrifugal loading of the magnetosphere by a cold plasma

    Saturn's ionosphere: Inferred electron densities

    Get PDF
    During the two Voyager encounters with Saturn, radio bursts were detected which appear to have originated from atmospheric lightning storms. Although these bursts generally extended over frequencies from as low as 100 kHz to the upper detection limit of the instrument, 40 MHz, they often exhibited a sharp but variable low frequency cutoff below which bursts were not detected. We interpret the variable low-frequency extent of these bursts to be due to the reflection of the radio waves as they propagate through an ionosphere which varies with local time. We obtain estimates of electron densities at a variety of latitude and local time locations. These compare well with the dawn and dusk densitis measured by the Pioneer 11 Voyager Radio Science investigations, and with model predictions for dayside densities. However, we infer a two-order-of-magnitude diurnal variation of electron density, which had not been anticipated by theoretical models of Saturn's ionosphere, and an equally dramatic extinction of ionospheric electron density by Saturn's rings

    The source of Saturn electrostatic discharges: Atmospheric storms

    Get PDF
    Important properties of the recently discovered Saturn electrostatic discharges are entirely consistent with an extended lightning storm system in Saturn's atmosphere. The presently favored B-ring location is ruled out
    • …
    corecore